Gravitational Waves and Electromagnetic Radiations from Dyon-Dyon Bound Systems

Mohd Sirtaz, Prof. Patrick Das Gupta

Department of Physics and Astrophysics,

University of Delhi, Delhi-110007, INDIA.

The Cosmology from Home 2022

Overview

• Binary black hole system inspiralling in, generates Gravitational Waves.

• Consider a black hole having both electric and magnetic charges, *Dyonic Black hole*.

• A binary system consisting of dyonic blackholes, interacting *electromagnetically and gravitationally*.

 In our project we have analysed the fields and power of electromagnetic and gravitational radiation.

Results

$$ext{Charges}: \, q_2 = \sqrt{G} m_2 1.0 imes 10^{-5}, \, g_1 = hc/(4\pi q_2)$$

Parametes					
m_1	m_2	$r_1/R_{ m BH}$	$r_2/R_{ m BH}$	$E\left(\mathrm{erg} ight)$	$l\left(\mathrm{g\ cm^{2}\ s^{-1}} ight)$
$29.0M_{\odot}$	$36.0M_{\odot}$	20.6	617.4	$-4.0 imes10^{52}$	$6.1 imes10^{52}$
$5.0 imes10^{26}{ m g}$	$5.0 imes10^{26}\mathrm{g}$	18.6	557.4	$-3.9 imes 10^{44}$	$3.4 imes10^{36}$
$2.9 imes 10^{21} \mathrm{g}$	$3.6 imes10^{22}\mathrm{g}$	34.4	1031.7	$-1.2 imes10^{39}$	$2.6 imes10^{27}$
$1.0 imes 10^{15} \mathrm{g}$	$1.0 imes 10^{16} \mathrm{g}$	33.8	1013.4	$-4.3 imes10^{32}$	$2.4 imes10^{14}$

Results				
$\omega \left({{\mathop{ m rad}} \; {{\mathop{ m s}}^{ - 1}}} ight)$	$P_{em}\left({ m erg~s^{-1}} ight)$	$P_{ m GW}\left({ m erg~s^{-1}} ight)$		
40.0	$2.5 imes10^{40}$	$1.5 imes10^{50}$		
$7.0 imes10^9$	$5.7 imes10^{40}$	$4.2 imes10^{50}$		
$2.8 imes10^{13}$	$3.2 imes10^{37}$	$6.8 imes10^{46}$		
$1.0 imes10^{20}$	$5.2 imes10^{37}$	$1.2 imes10^{47}$		

$$ext{Charges}: \, q_2 = \sqrt{G} m_2 1.0 imes 10^{-3}, \, g_1 = hc/(4\pi q_2)$$

Parametes					
m_1	m_2	$r_1/R_{ m BH}$	$r_2/R_{ m BH}$	$E\left(\mathrm{erg}\right)$	$l\left(\mathrm{g\ cm^{2}\ s^{-1}} ight)$
$5.0 imes10^{26}{ m g}$	$6.0 imes 10^{26} \mathrm{g}$	20.3	608.1	$-3.5 imes10^{44}$	$4.4 imes10^{36}$

Results			
$\omega \left(\mathrm{rad} \; \mathrm{s}^{-1} \right)$	$P_{em} \left({ m erg \ s^{-1}} ight)$	$P_{ m GW} \left({ m erg \ s^{-1}} ight)$	
$5.0 imes 10^9$	$2.8 imes10^{44}$	$1.7 imes10^{50}$	

Charges:
$$q_2 = \sqrt{G}m_2 1.0 \times 10^{-3}, \ g_1 = hc/(4\pi e), e = 4.8 \times 10^{-10} {
m esu}$$

Parametes					
m_1	m_2	$r_1/R_{ m BH}$	$r_2/R_{ m BH}$	$E\left(\mathrm{erg}\right)$	$l\left(\mathrm{g\ cm^{2}\ s^{-1}} ight)$
$10^{16} { m GeV}$	$10^{20}\mathrm{g}$	38.0	682.0	$-1.1 imes 10^6$	$4.7 imes10^{-9}$

Results				
$\omega \left(\mathrm{rad} \; \mathrm{s}^{-1} ight)$	$P_{em} \left({ m erg \ s^{-1}} ight)$	$P_{ m GW} \left({ m erg \ s^{-1}} ight)$		
$5.0 imes 10^{17}$	$1.0 imes 10^6$	$9.1 imes10^{-9}$		

Summary and Conclusions

- We have calculated the analytic solutions for dynamics of dyon-dyon interaction.
- We discussed electromagnetic interaction due to electric and magnetic charge. Here we have calculated electric field and power of electromagnetic wave for general dyon pairs.
- In last we considered gravitational interaction due to masses of dyons, where
 we have described the GW '+' as well as 'x' polarization and its power. Our GW
 power matches with Peters and Mathews when electric charges and
 magnetic monopoles are zero.
- Currently, we are working on the back-reaction problem of Dyon-Dyon interaction for bound systems.

Thank You Lhank Aon