What can we learn about stellar-origin binary black holes with LISA?

Jesús Torrado

Université Libre de Bruxelles

Cosmology From Home 2022 – Parallel talk

with S. Babak, C. Caprini, D. Figueroa, N. Karnesis, P. Marcoccia, G. Nardini, M. Pieroni, A. Ricciardone, A. Sesana

> [arXiv:2207.XXXXX] (background) and [arXiv:2207.YYYYY] (individual events)

LIGO/Virgo/KAGRA GTWC-3 – Abbot et al. '21a

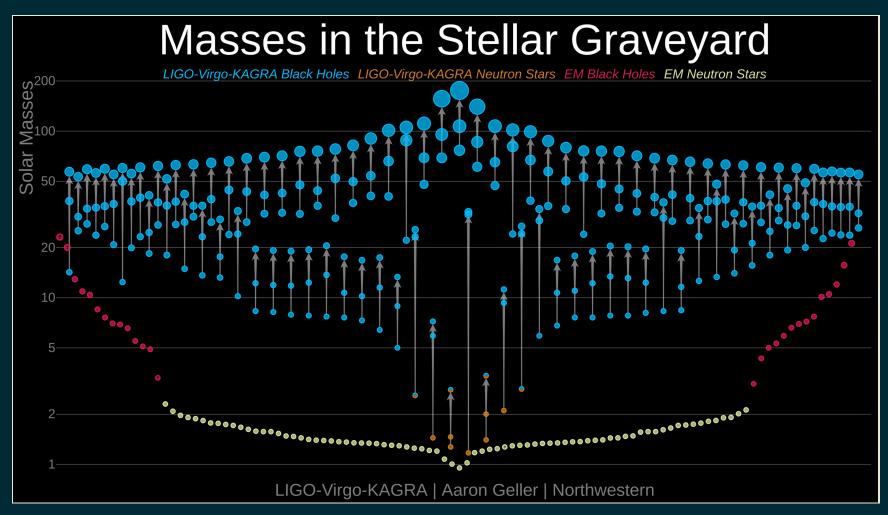
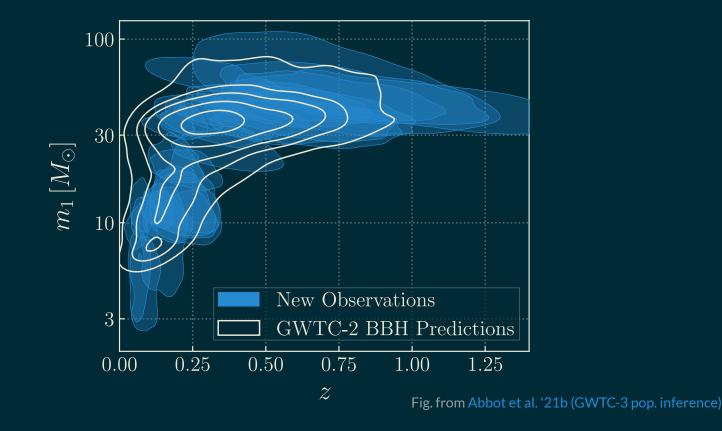



Fig. from LIGO-Virgo / Aaron Geller / Northwestern University

 \sim 70 binary black hole merging events with stellar-like mass

Stellar-origin binary black-hole systems (SOBBHs)


and Tso et al. '18 (both modified)

LVK ($f \sim 30 - 7 \cdot 10^3 \text{ Hz}$) observes transient merging signals (last $\sim 0.1s$) LISA ($f \sim 5 \cdot 10^{-4} - 10^{-2} \text{ Hz}$) will detect continuous inspiraling signals:

- some resolved as peaks on the spectrum $(f \sim {
 m const})$
- a confusion noise background of unresolved events $\left(\Omega_{
 m GW}h^2 \propto f^{2/3}
 ight)$

LVK population inference

LVK performs inference on the parameters of individual events, and uses that to place constraints on the parameters of a **population model** that would have produced the observed events (Abbot et al. '21b).

This is hard! Detection & selection effects, high-dim parameter space...

LVK population inference \Rightarrow LISA

Our work: use LVK's population inference to infer, for LISA:

- what is the shape and amplitude of the confusion noise background?
- how many (and which) resolved inspiraling events would be observed?

Outline:

- 1. A look at the population model
- 2. Confusion background:
 - Computation for a set of population parameters
 - LVK prediction for the amplitude and its uncertainty
 - LISA precision forecast

3. Resolved inspiraling binaries observed by LISA

Population model – Abbot et al. '18

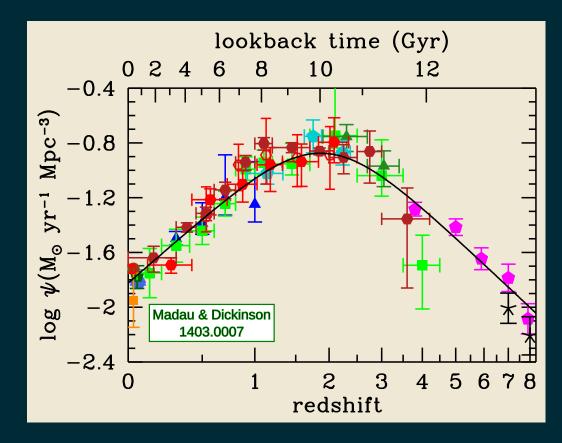
$$\frac{dN}{d\xi dz} = R(z;\theta) \frac{dV_c}{dz}(z) \frac{T_{tot}}{1+z} p(\xi;\theta)$$

 $R(z; \theta)$ rate of events per unit time and comov volume

accounting for physical size of comoving volume

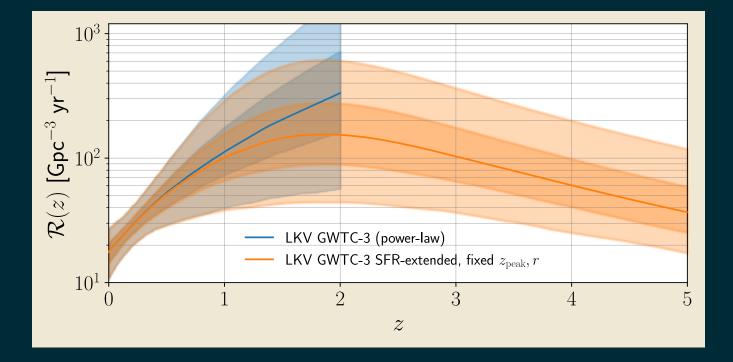
 $\frac{dV_c}{dz}(z)$

time during which events are generated

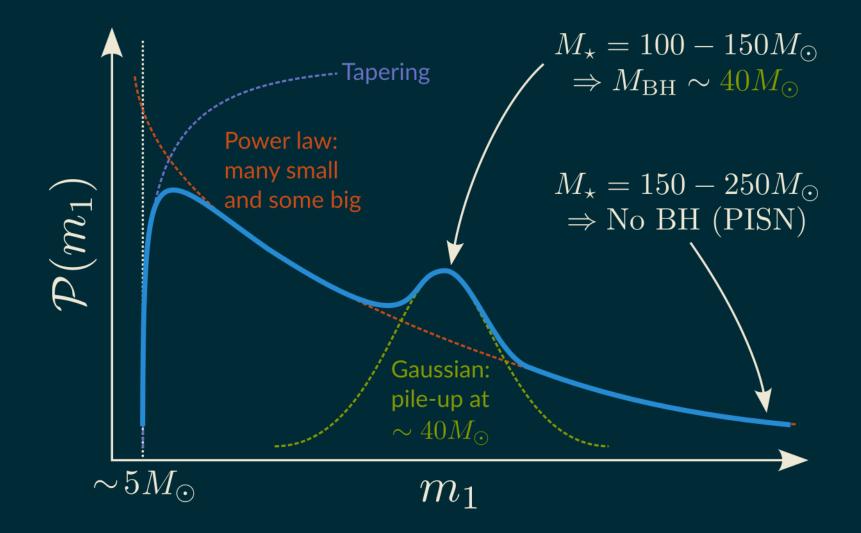

 $p(\xi; \theta)$ distribution of masses, spins...

The functional form of $R(z; \theta)$ and $p(\xi; \theta)$ and their hyperparameters θ define the population model.

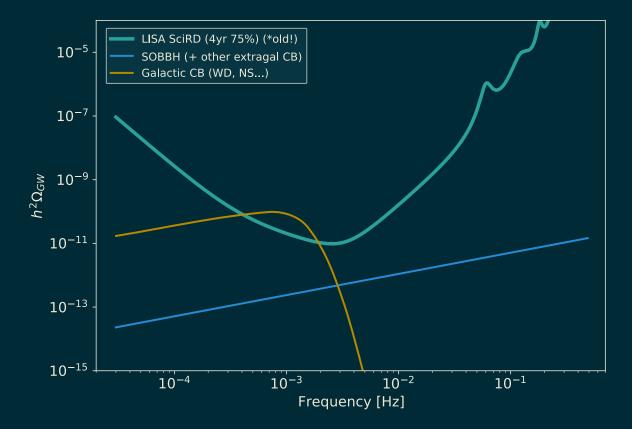
Population model – merger rate R(z)


$$R(z; d, r, z_{ ext{peak}}) = R_0 rac{(1+z)^d}{1 + rac{d}{-r} \left(rac{1+z}{1+z_{ ext{peak}}}
ight)^{d-r}}$$

Assumption: the rate of SOBBH mergers follows the **Star Formation Rate**


Population model – merger rate R(z) – II

$$R(z; d, r, z_{ ext{peak}}) = R_0 rac{(1+z)^d}{1 + rac{d}{-r} \left(rac{1+z}{1+z_{ ext{peak}}}
ight)^{d-r}}$$


- $z \lesssim 0.5 \Leftarrow$ individual events
- $z \lesssim 5 \Leftarrow$ background of unresolved events

Mass distributions – "Power-law + Peak" – Talbot & Thrane '18

Ratio $q=m_2/m_1$ \Rightarrow Power law suppressed

Background of unresolved events

Given a set of population model (hyper)parameters, it can be computed:

- analytically
- from a synthetic population:
 - as a Monte Carlo sum of the analytical formula
 - as a (more or less) full simulation of LISA's pipeline

Background computation I: Analytical

Energy spectrum radiated by a single inspiraling binary of chirp mass \mathcal{M} :

$$rac{dE_{
m GW}}{df_r} = rac{\pi}{3} rac{1}{G} rac{(G\mathcal{M})^{5/3}}{\pi^{1/3} f_r^{1/3}} igg|_{f_r=f(1+z)} \qquad \mathcal{M} = (m_1+m_2)^{2/5} \left(rac{m_1m_2}{m_1+m_2}
ight)^{3/5}$$

Integrated over the population (natural units):

$$\Omega_{
m GW}(f)h^2 = rac{8\pi}{3}rac{h^2}{H_0^2}\int_0^\infty dz rac{dn}{dz} rac{1}{1+z} f_r rac{dE_{
m GW}}{df_r}igg|_{f_r=f(1+z)}$$

Phinney '01

Using the population model for dn/dz and simplifying:

$$\Omega_{
m GW}(f)h^2 = rac{8\pi^{5/3}}{9}rac{h^2}{H_0^2}f^{2/3}\int_0^\infty \mathrm{d}\mathcal{M}\,p(\mathcal{M}(m_1,m_2))\mathcal{M}^{5/3}\int_0^\infty \mathrm{d}z\,R(z)rac{(1+z)^{2/3}}{H(z)}$$

Power law: $\Omega_{
m GW}(f)h^2 \propto f^{2/3}$ Population details o Amplitude

Background computation II: Monte Carlo

Integrals over a number density can be approximated by a sum over synthetic populations consistent with it:

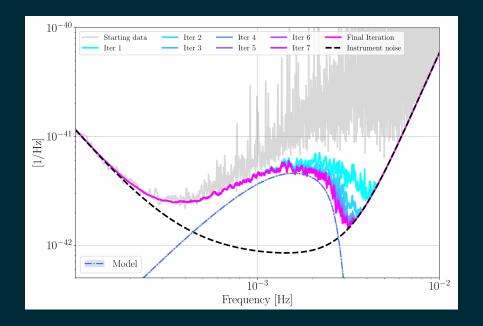
$$\int \mathrm{d}x \ rac{\mathrm{d}N}{\mathrm{d}x} f(x) pprox \sum_{x_i \in \mathrm{pop}} f(x_i)$$

Re-writing the backgroung integral as a sum over a population:

$$\Omega_{
m GW}(f)h^2 = rac{2\pi^{2/3}}{9}rac{h^2}{H_0^2}rac{1}{T_{
m tot}}\left(\sum_{i\in {
m pop}}rac{\mathcal{M}_i^{5/3}}{d_{c,i}^2(1+z_i)^{1/3}}
ight)f^{2/3}$$

Q: how much is the **Poisson realisation uncertainty**, i.e. randomness of the population realisation?

WHY? like *Cosmic Variance*, it would need to be added to the likelihood covariance if of the order of forecasted sensitivity.

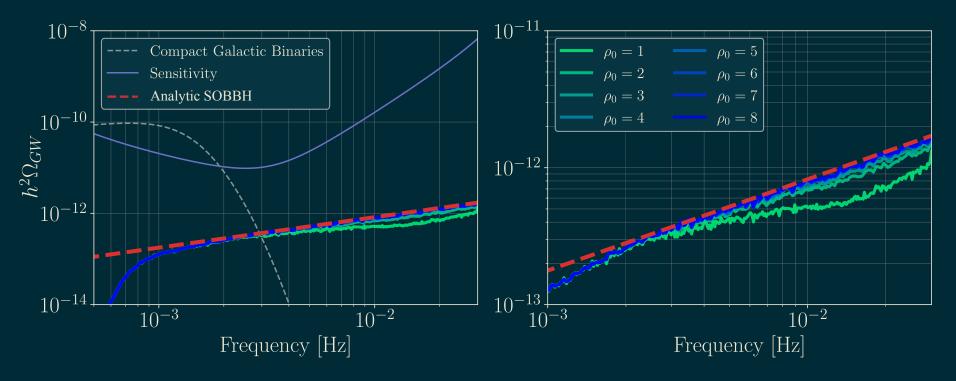

A: (PRELIMINARY) $\lesssim 0.5\%$ (background is sum over many small amplitudes)

Background computation III: Simulation

- **Q**: Is the analytical computation **realistic** enough?
- WHY? There may be instrumental effects, and full simulations are expensive!

Fast LISA simulation – Karnesis et al. '21

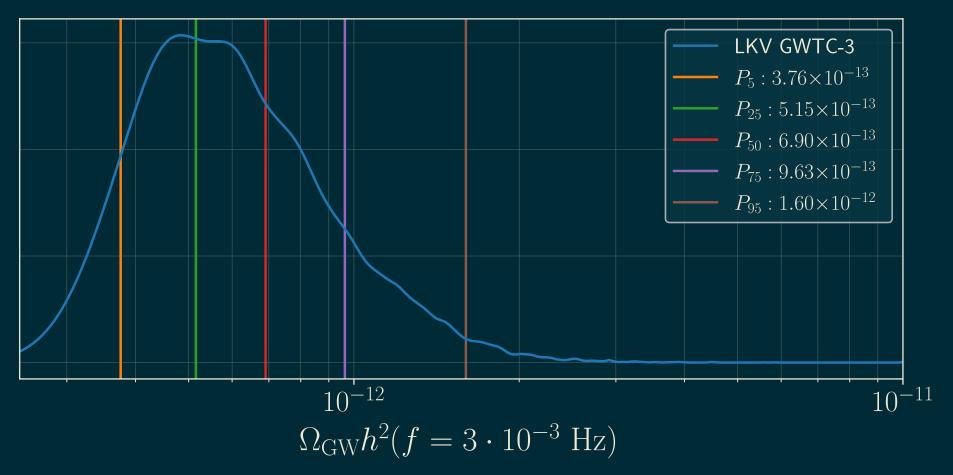
- 1. Start with a population, assume perfect subtraction of loud events.
- 2. Compute confusion background smoothing over signal.
- 3. Subtract events with high SNR wrt this iteration's background.
- 4. Recompute background, check convergence / go back to 1.


Provides **both** background **and** individual detectable sources (at given SNR)

Background computation IV: Comparison

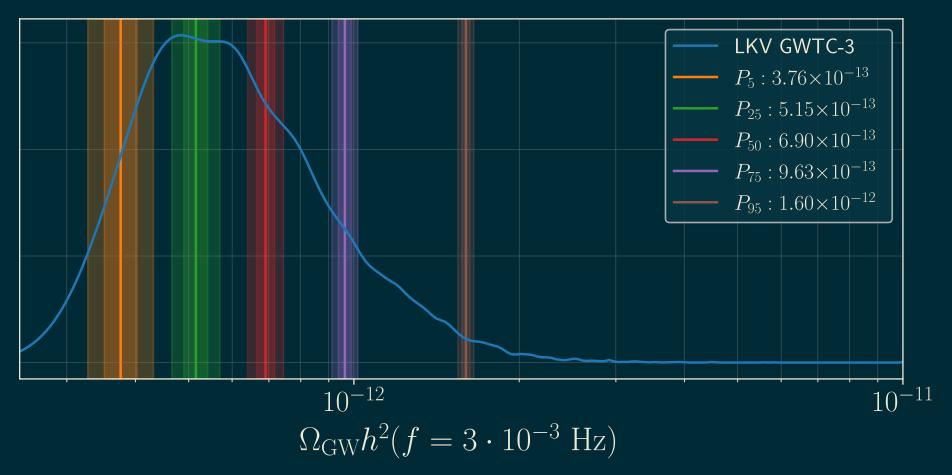
Q: Is the analytical computation **realistic** enough?

WHY? There may be instrumental effects, and full simulations are expensive!


A: Fast simulation is realistic (up to non-physical effects, e.g. au_c cut)

But would take forever! $\sim 500\cdot 10^6$ events for $z_{
m max}=5$ (above $z_{
m max}=1$)

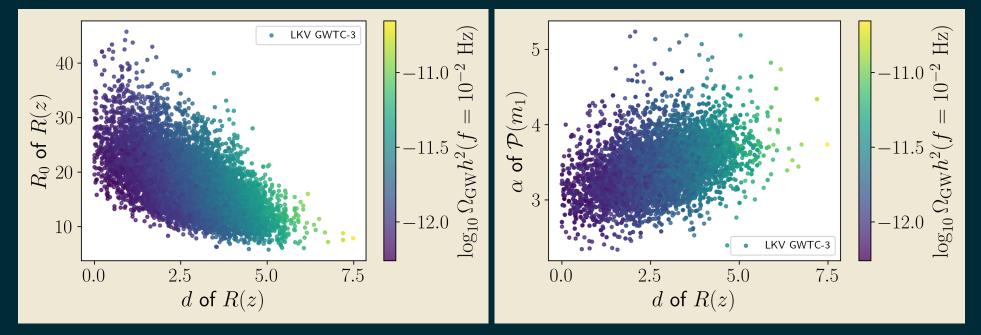
We can use the simulator to subtract individual events, injecting a full analytic background!!!


Background prediction from LVK GWTC-3 (approximate)

Density of GWTC-3 posterior samples on the background, analytic computation with high-z R(z) extension (optimistic LVK prediction)

Showing percentiles 5, 25, 50, 75, 95 (mind log-scaled x axis).

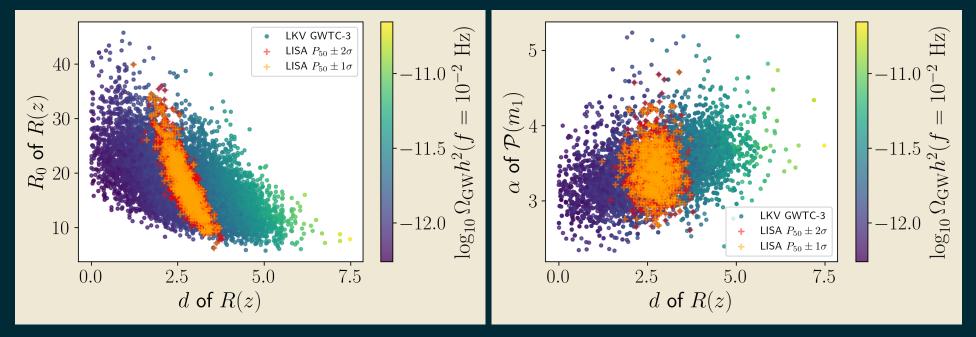
Background prediction from LVK GWTC-3 (approximate)


LISA forecast per percentile: $\sim imes 20$ precision re LVK' SOBBH prediction!

Method: LISA 3-channels, $4 ext{ yr}$, marged over tilt + galactic CB ($+10\%\sigma$) + noise. Fisher, cross-checked with full MC.

Population parameter constraints from the background?

Since LISA will measure the background with high precision, can it further constrain population parameters?


Which ones? z-distribution, $\mathcal M$ -distribution (but not e.g. spins, position)

Population parameter constraints from the background?

Since LISA will measure the background with high precision, can it further constrain population parameters?

Which ones? z-distribution, \mathcal{M} -distribution (but not e.g. spins, position)

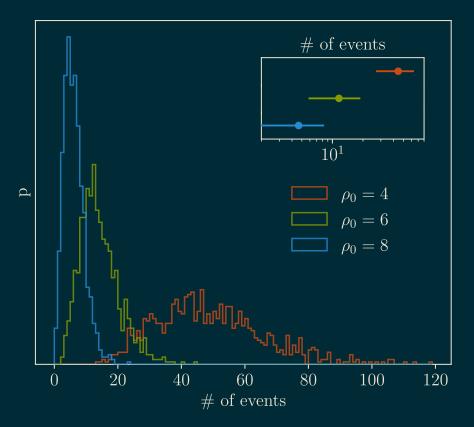
Inject e.g. median, select samples within LISA-forecasted error band, and look at compatible population parameters.

Very preliminary and optimistic (would need harder proper analysis). Not an actual result of ours (yet). Just peeking behind the curtain!

Individual events

We mentioned that the *fast simulator* let us characterise individual events, in particular, get their **SNR** in the presence of realistic instrument + astro noise.

Simulating a full population is very expensive: too many events! ($\sim 500 {
m M}$)


Since the analytic computation of the background is realistic, let us:

- Inject a background following the analytic computation
- Simulate a reduced number of sources, with <code>approx SNR</code> ≥ 2 (e.g.)
- Select sources with real SNR higher than some threshold (usually 8).

This allow us to do thousands of simulations in mere hours.

One (or more) such simulations per GWTC-3 posterior sample \Rightarrow probability distribution of #sources with $SNR_{LISA} > \rho!$

Individual events – II

- Few detectable events: $SNR_{LISA} > 8$
- Many archival search candidates: ${
 m SNR}_{
 m LISA}>4$ (Ewing, Sachdev et al. '20)
- Potential for (multi-messenger) forewarning with intermediate SNR: high $f \rightarrow$ high SNR_{LISA} AND high $f \rightarrow$ faster f evolution \rightarrow closer to merging \rightarrow maybe observable by LKV, ET...

Conclusions

- LISA can measure very precisely the SOBBH background predicted by LVK
 ⇒ can be accounted-for in parameter-free cosmological SGWB reconstructions
- The combination of individual events from LVK and background from LISA would further constrain the population model (more work needed!)
- LISA will see just a few inspiraling events, but many archival search candidates, maybe some forewarning.
- Future work from our team:
 - add other degenerate sources to formalism: BNSs, NSBHs
 - proper population parameter constraints
 - characterisation of forewarning events

Thanks!

References

Abbot et al. '21a: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run, the LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration (arXiv:2111.03606)

Abbot et al. '21b: The population of merging compact binaries inferred using gravitational waves through GWTC-3, the LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration (arXiv:2111.03634)

LV '16 (GW150914 discovery): Observation of Gravitational Waves from a Binary Black Hole Merger, the LIGO Scientific Collaboration and the Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016) (arXiv:1602.03837)

Tso et al. '18: Optimizing LIGO with LISA forewarnings to improve black-hole spectroscopy, R. Tso, D. Gerosa and Y. Chen, Phys. Rev. D 99, 124043 (2019) (arXiv:1807.00075)

Abbot et al. '18: Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, the LIGO Scientific Collaboration and the Virgo Collaboration, **ApJL 882 L24 (2019)** (arXiv:1811.12940)

Talbot & Thrane '18: Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization, C. Talbot and E. Thrane, ApJ 856 173 (2018) (arXiv:1801.02699)

Phinney '01: A Practical Theorem on Gravitational Wave Backgrounds, E.S. Phinney (arXiv:astro-ph/0108028)

Sesana '16: The promise of multi-band gravitational wave astronomy, A. Sesana, Phys. Rev. Lett. 116, 231102 (2016) (arXiv:1602.06951)

Karnesis et al. '21: Characterization of the stochastic signal originating from compact binaries populations as measured by LISA, N. Karnesis, S. Babak, M. Pieroni, N. Cornish and T. Littenberg, Phys. Rev. D 104, 043019 (2021) (arXiv:2103.14598)

Ewing, Sachdev et al. '20: Archival searches for stellar-mass binary black holes in LISA, B. Ewing, S. Sachdev, S. Borhanian and B.S. Sathyaprakash, Phys. Rev. D 103, 023025 (2021) (arXiv:2011.03036)

Some recent related works

Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run, the LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. D 104, 022004 (2021) (arXiv:2101.12130)

Impact of LIGO-Virgo binaries on gravitational wave background searches, M. Lewicki and V. Vaskonen (arXiv:2111.05847)

Constraining changes in the merger history of (P)BH binaries with the stochastic gravitational wave background, V. Atal, J.J. Blanco-Pillado, A. Sanglas and N. Triantafyllou (arXiv:2201.12218)