

Voronoi Volume Function

A new probe of cosmology & galaxy evolution

Aseem Paranjape

Inter-University Centre for Astronomy & Astrophysics (IUCAA), Pune

Cosmology From Home July 2022

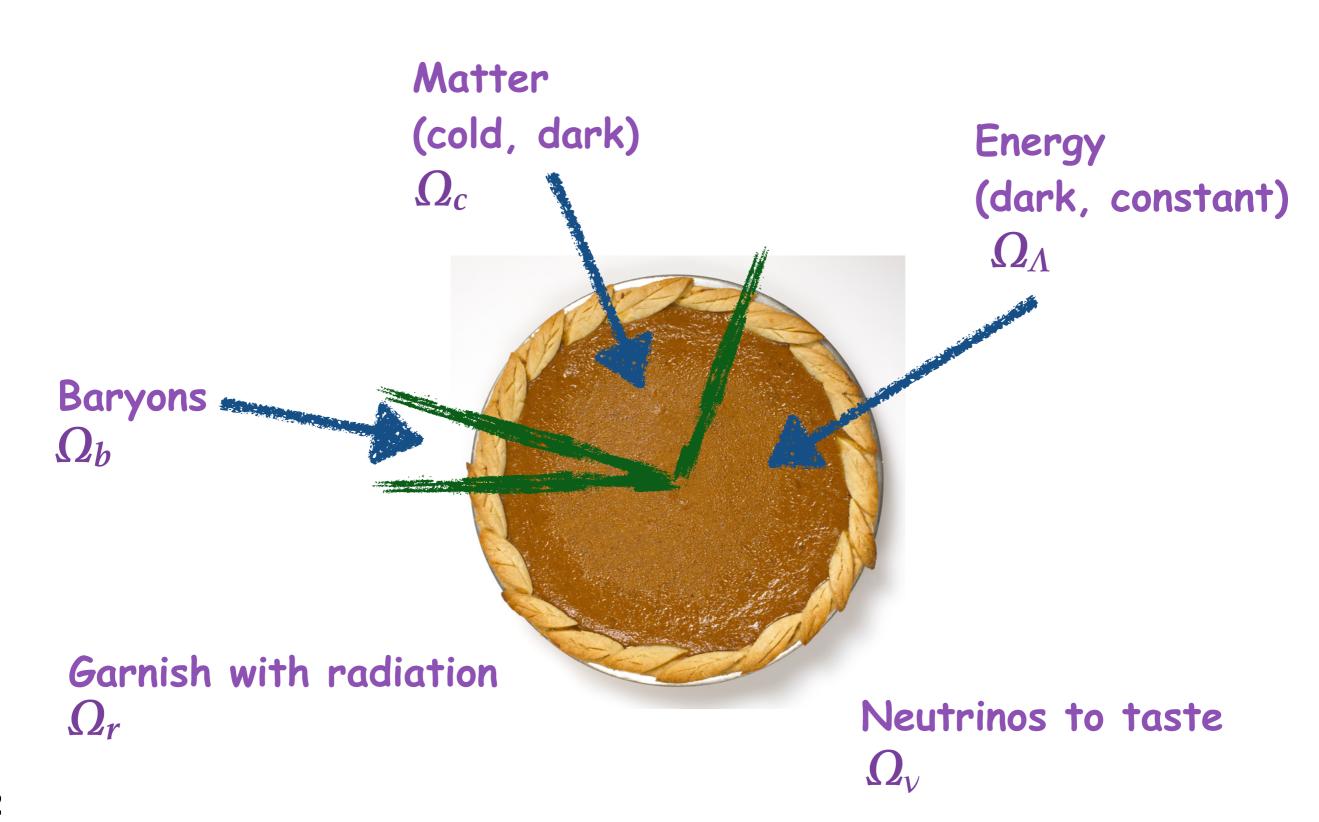
(in collaboration with Shadab Alam)

arXiv:2001.08760 (MNRAS)

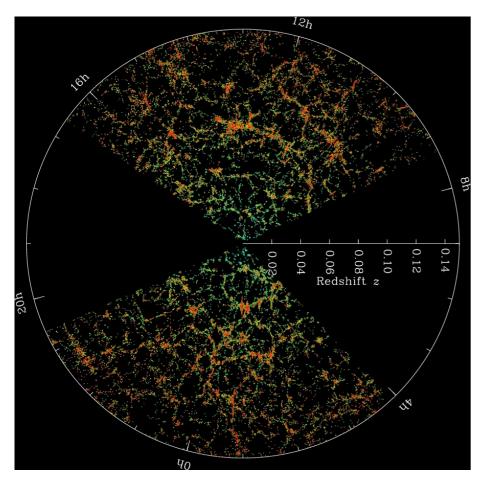
Outline

- ◆ Introduction
 - Development of the Cosmic Web (non-Gaussian spatial distribution of matter)
- ◆ Information beyond 2-pt statistics
 - Voronoi tessellation
 - Voronoi volume function (VVF): definition and analytical expectations
 - Simulations: VVF dependence on halo mass, large-scale clustering, redshift, nature of dark matter, RSD, substructure
- ◆ Preliminary comparisons with observations

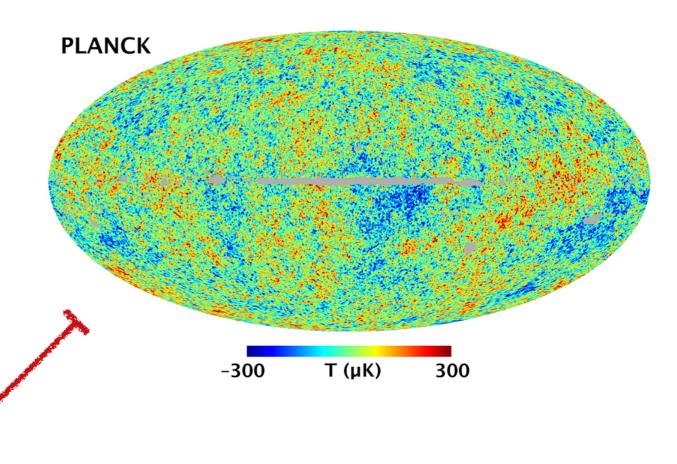
Standard Model of Cosmology

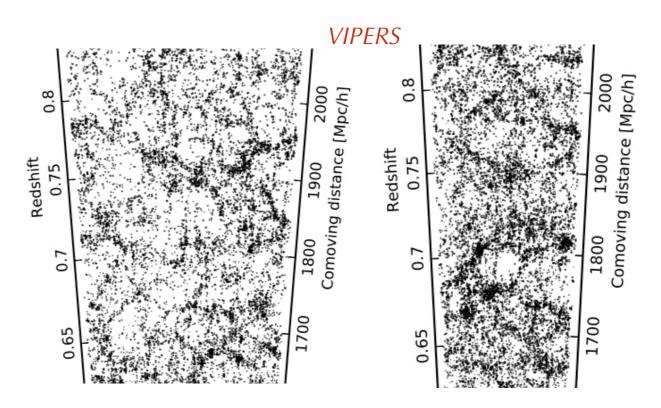


Growth of Structure



Sloan Digital Sky Survey



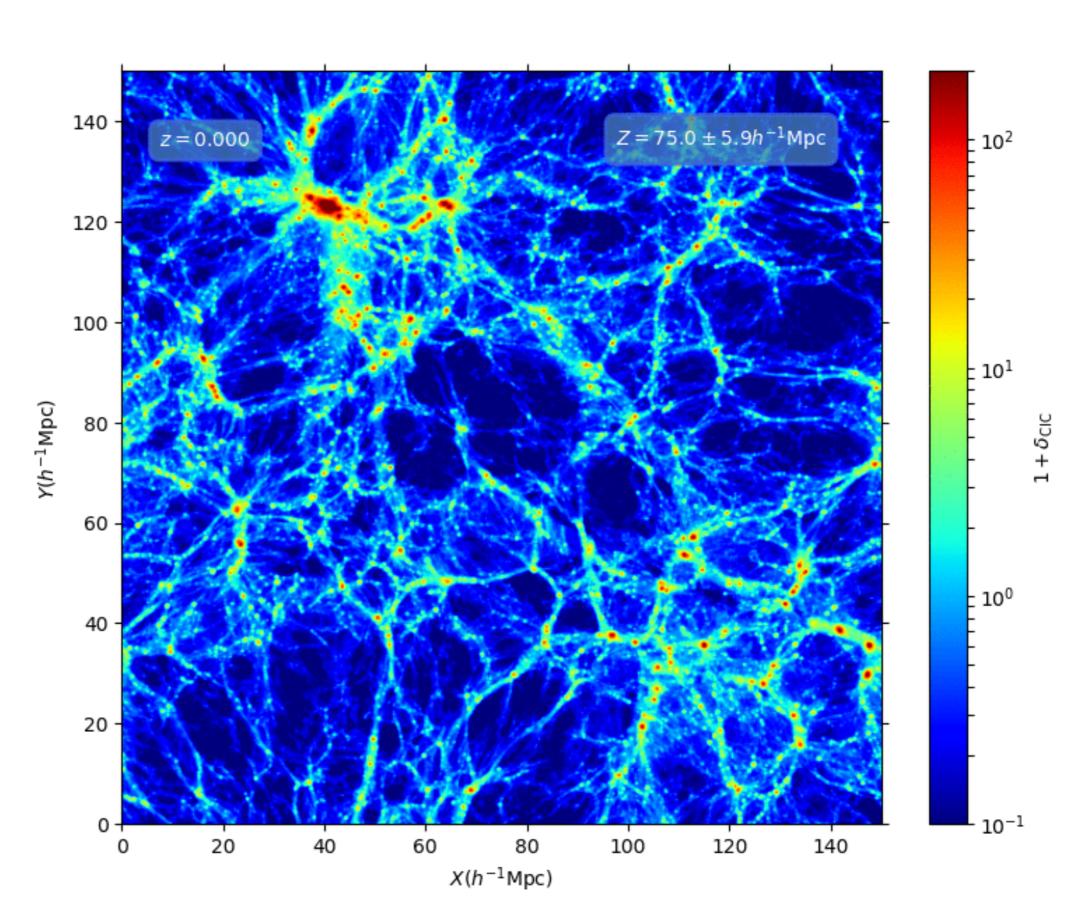


Growth of Structure

Standard Λ CDM cosmology.

Collisionless cold dark matter.

Newtonian self-gravity.



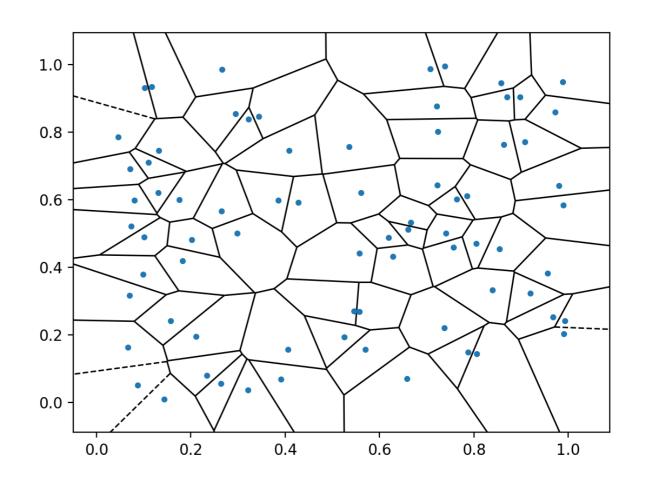
Voronoi tessellation

Given N_{trc} tracers at positions $\{\mathbf{x}_t\}$ with $1 \le t \le N_{\text{trc}}$, the Voronoi tessellation is a partition of space into N_{trc} cells $\{\mathscr{C}_t\}$ such that, for a given tracer t, \mathscr{C}_t is the set of points closer to t than to any other t'.

- Used in various fields such as meteorology, epidemiology, geophysics, computational fluid dynamics (e.g. AREPO) etc.
- Several applications in cosmology too. E.g., cosmic web classification, void identification, etc.

This talk:

Volume function of Voronoi cells of 3d clustered tracers



SciPy implementation of Voronoi tessellation of uniformly distributed 2d tracers.

Voronoi tessellation

WMAP7 Λ CDM

tracers:

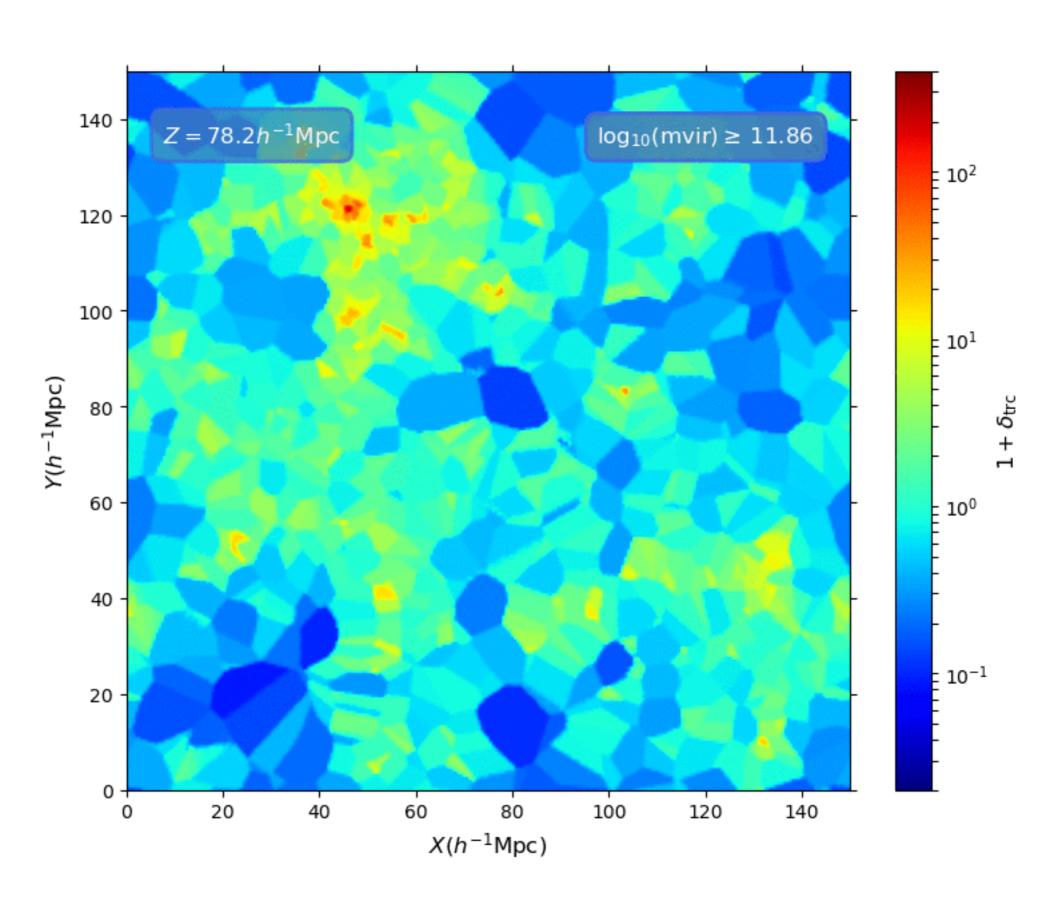
mass-thresholded haloes at z = 0

tessellation:

Monte Carlo algorithm

colour:

$$1 + \delta_{\text{trc}} = (n_{\text{trc}}V)^{-1}$$



Outline

- **♦** Introduction
 - Development of the Cosmic Web (non-Gaussian spatial distribution of matter)
- ◆ Information beyond 2-pt statistics
 - Voronoi tessellation
 - Voronoi volume function (VVF): definition and analytical expectations
 - Simulations: VVF dependence on halo mass, large-scale clustering, redshift, nature of dark matter, RSD, substructure
- ◆ Preliminary comparisons with observations

Voronoi volume function

Definitions

If V(t) is volume of cell \mathcal{C}_t containing tracer t then

$$\langle V \rangle = \frac{1}{N_{\text{trc}}} \sum_{t} V(t) = \frac{V_{\text{tot}}}{N_{\text{trc}}} = n_{\text{trc}}^{-1}$$

Define

$$y \equiv V/\langle V \rangle = n_{\rm trc} V$$

We will denote the probability distribution p(y) as the Voronoi volume function (VVF).

Clearly
$$\langle y \rangle = \int dy \, p(y) \, y = 1.$$

Voronoi volume function

Uniformly distributed (Poisson) tracers

For uniformly distributed (Poisson) tracers, $\langle y^2 \rangle$ is known analytically [Gilbert 1962]

$$\langle y^2 \rangle_{\text{Poisson}} = \frac{8\pi^2}{3} \int_0^\infty dz \, z^2 \int_{-1}^1 d\mu \frac{1}{v(z,\mu)^2} \simeq 1.179$$

where
$$v(z, \mu) = \frac{\pi}{3} \left[2z^3 + 3\mu z(z^2 + 1) - (3\mu^2 z^2 + 1)z + 3(1 - \mu z)T + 2T^{3/2} \right]$$

with $T = \left| z^2 + 1 - 2\mu z \right|$.

Although p(y) is not known analytically, accurate fitting functions exist, e.g.:

$$p_{\text{Poisson}}(y) = \frac{c b^{a/c}}{\Gamma(b/c)} y^{a-1} \exp(-by^c)$$

with a = 4.8065, b = 4.06342, c = 1.16391 [Tanemura 2003]

Voronoi volume function

Clustered tracers

For **clustered** tracers, generalising [Gilbert 1962] we can write

$$\langle y^2 \rangle = \frac{8\pi^2}{3} \int_0^\infty dz \, z^2 \int_{-1}^1 d\mu \frac{1}{v(z,\mu)^2} n_{\text{trc}}^2 \int_0^\infty dV_U V_U \exp\left(W_0(n_{\text{trc}}, V_U)\right)$$

where $\exp(W_0(n_{tre}, V))$ is the void probability function for the volume V [White 1979]:

$$W_0(n_{\text{trc}}, V) = \sum_{k=1}^{\infty} \frac{\left(-n_{\text{trc}}V\right)^k}{k!} \bar{\xi}_k(V) \equiv \left(-n_{\text{trc}}V\right) \chi(n_{\text{trc}}, V)$$

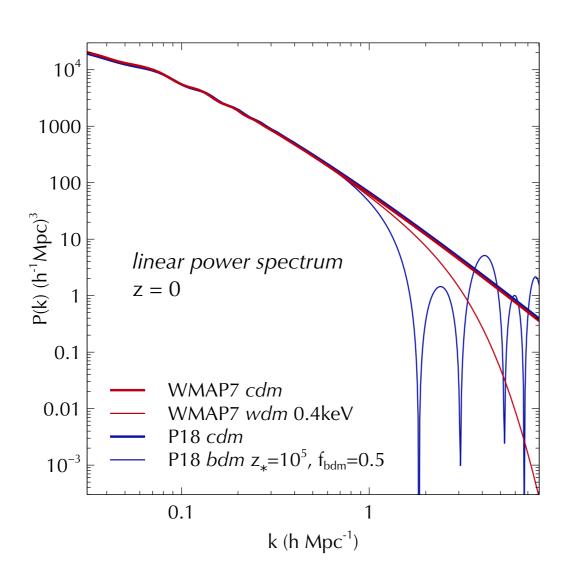
where $\bar{\xi}_k(V)$ is the connected k-point correlation function averaged over V.

Thus $\langle y^2 \rangle$ depends on the infinite hierarchy of tracer correlation functions.

[For Poisson distributed tracers, $\chi(n_{\rm trc}, V) = 1$ and we recover $\langle y^2 \rangle_{\rm Poisson} \simeq 1.179$.]

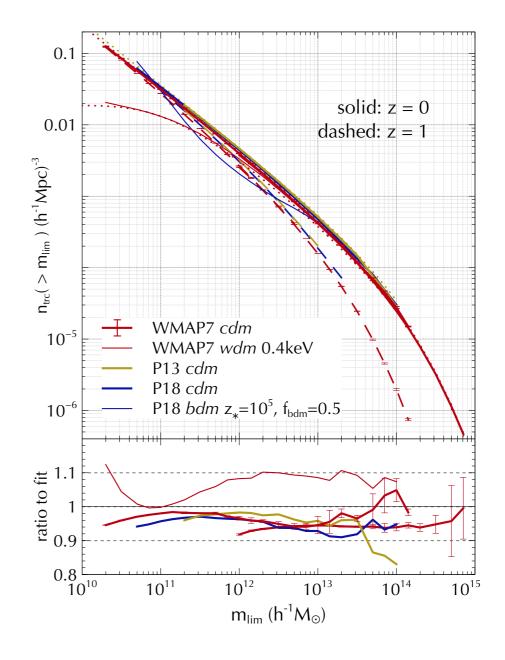
Simulation suite

Gravity-only GADGET-2 N-body runs



Cold Dark Matter

P13 ($\Omega_{\rm m} = 0.315, h = 0.673, \sigma_8 = 0.829$) L150_N512 **WMAP7** ($\Omega_{\rm m} = 0.276, h = 0.7, \sigma_8 = 0.811$) L150_N1024, L300_N1024, L600_N1024 **P18** ($\Omega_{\rm m} = 0.306, h = 0.678, \sigma_8 = 0.815$) L200_N1024



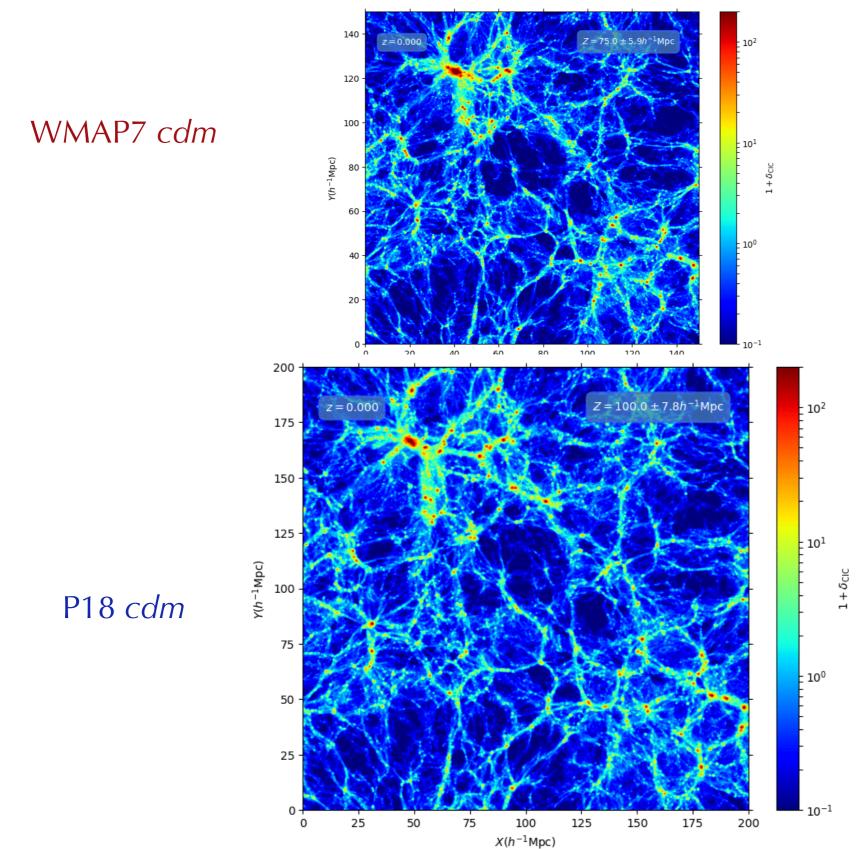
Alternate Dark Matter (paired to CDM)

WMAP7 warm DM $(m_{\rm DM} = 0.4 \, \text{keV})$

L150_N1024

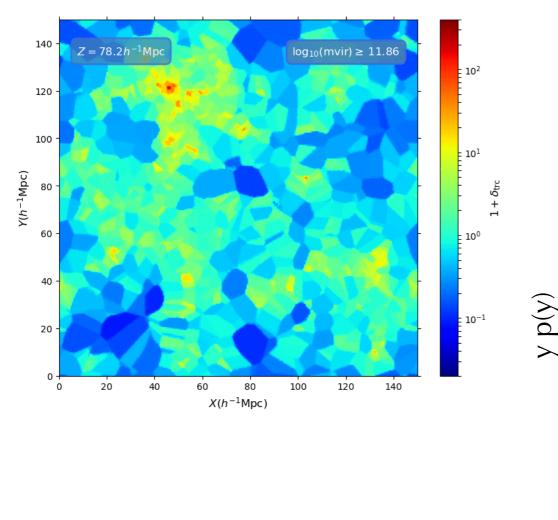
P18 ballistic DM $(z_* = 10^5, f_{\text{bdm}} = 0.5)$

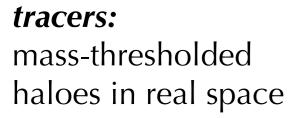
Simulation suite

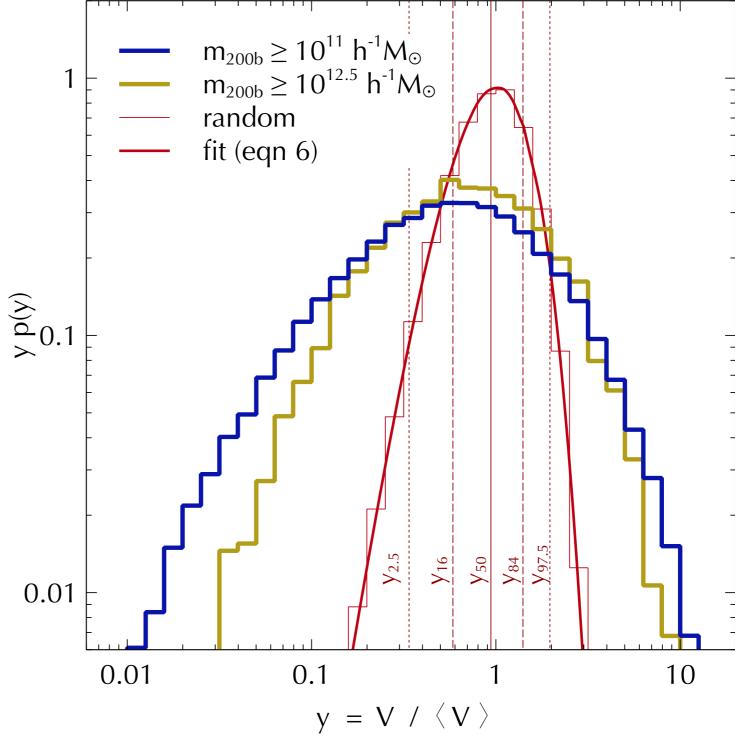


VVF shape

Dependence on halo mass

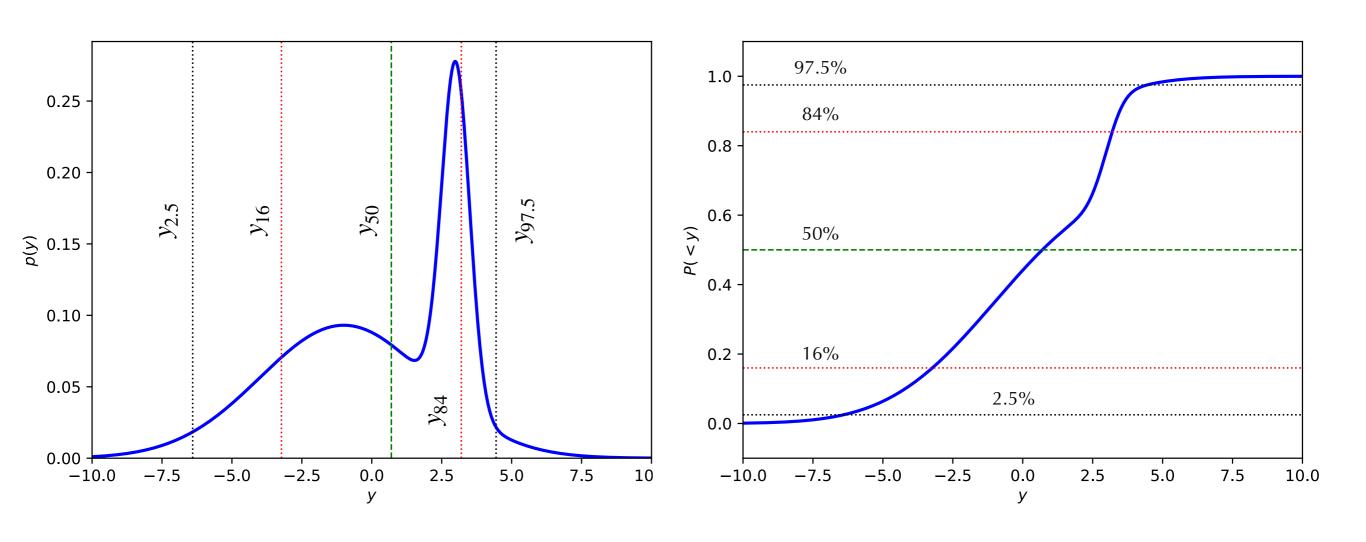






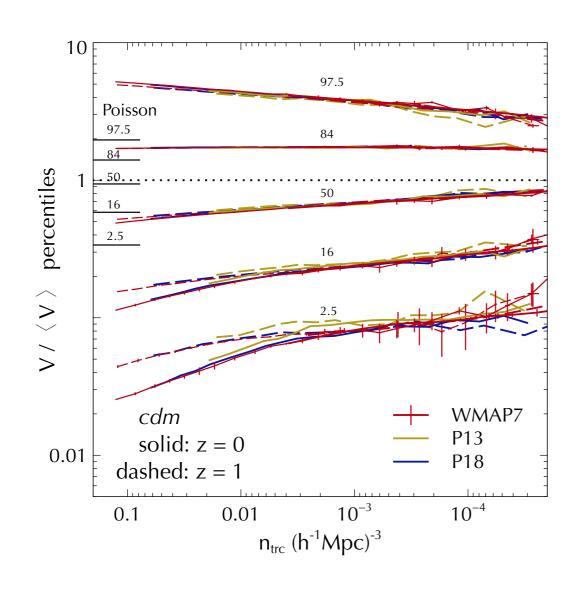
Aside

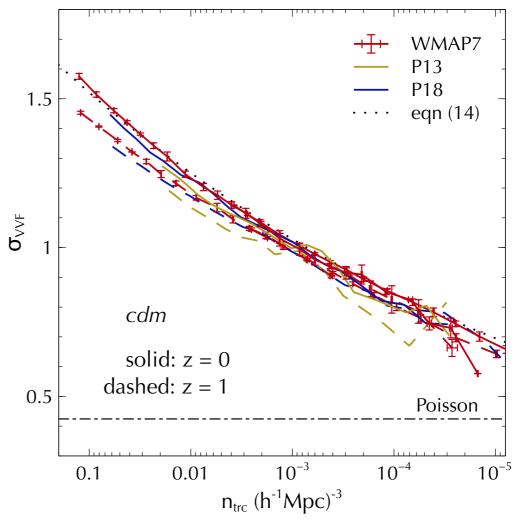
Percentiles of a distribution



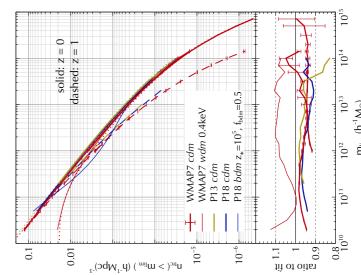
VVF percentiles + std dev

Dependence on halo mass and redshift



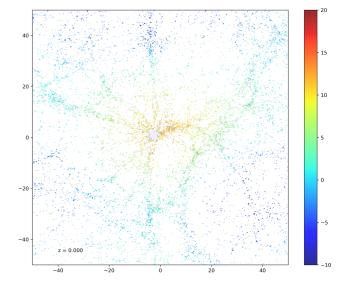


tracers: mass-thresholded haloes in real space

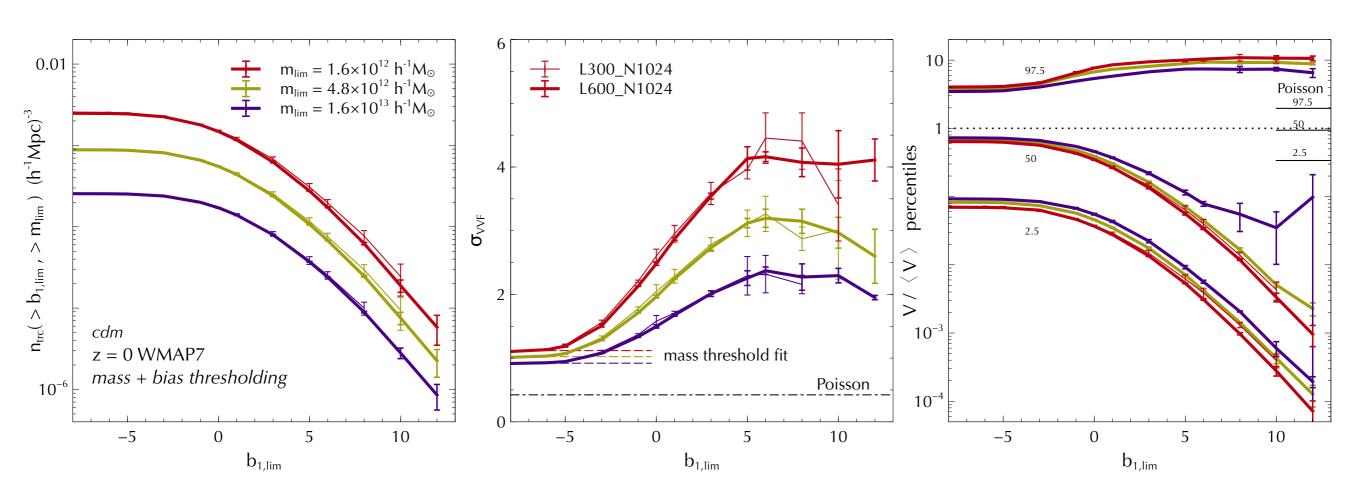


VVF percentiles + std dev

Dependence on halo clustering



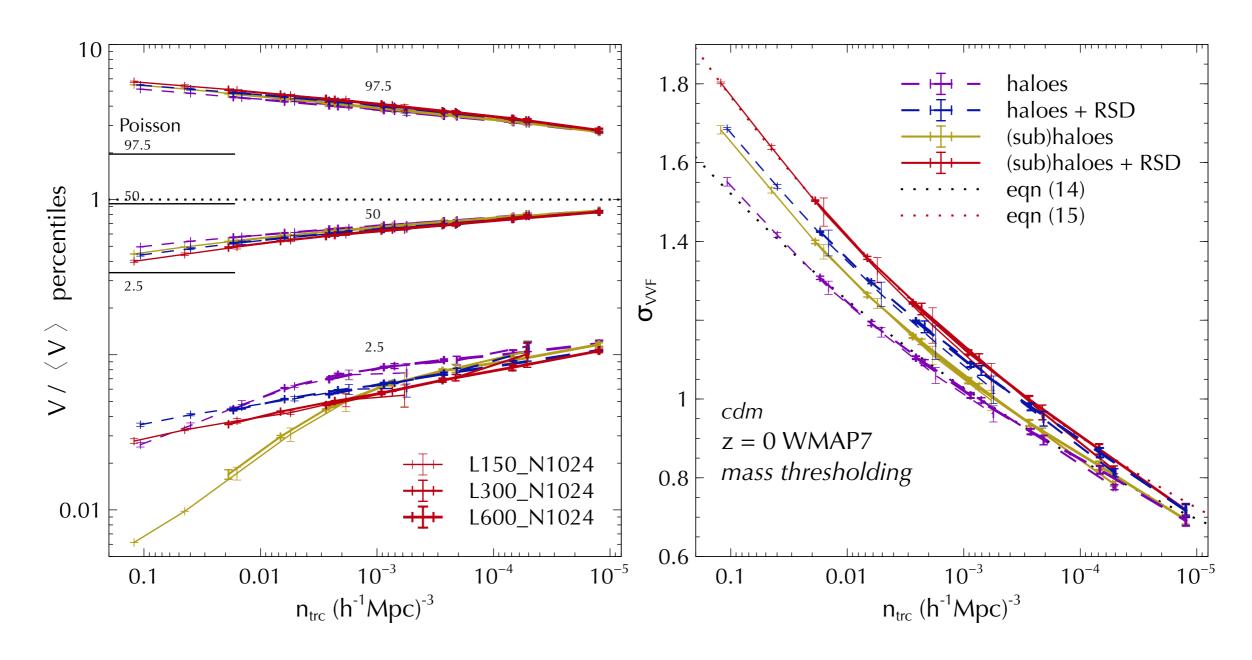
[AP, Hahn & Sheth 2018]



tracers: (mass + bias)-thresholded haloes in real space at z=0

VVF percentiles + std dev

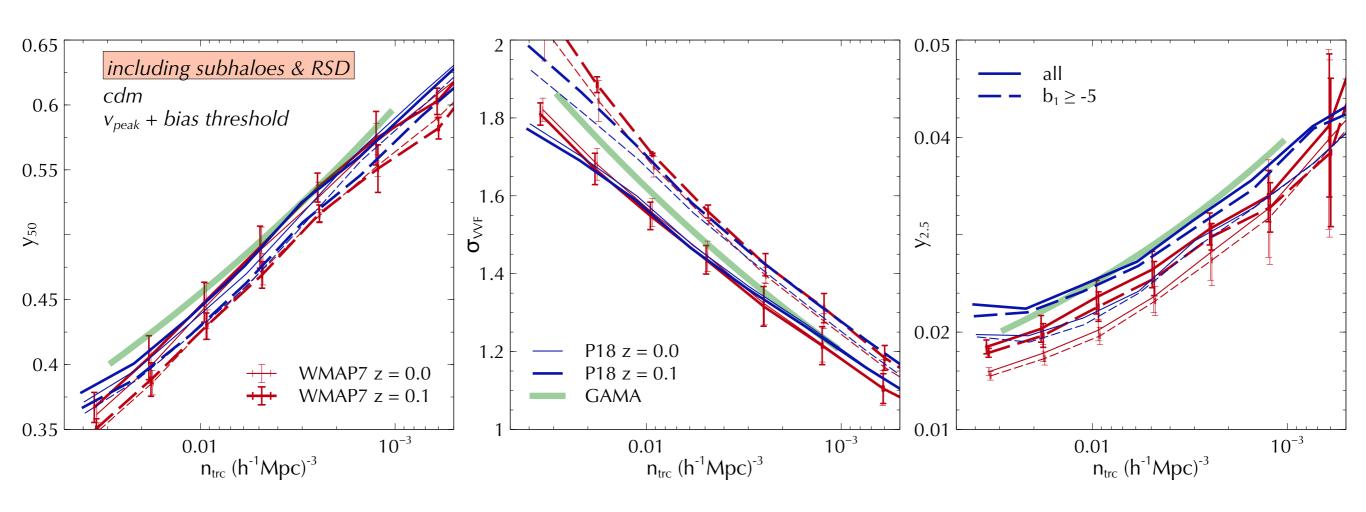
Effects of substructure and redshift-space distortions



tracers: mass-thresholded (sub)haloes in real and redshift space at z=0

Comparison with data

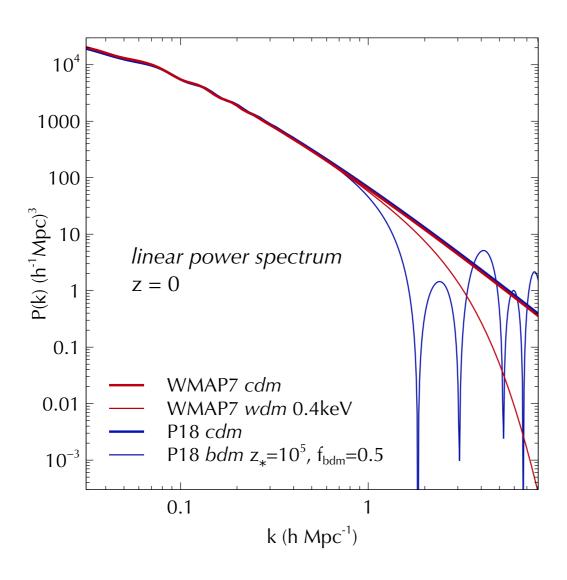
Subhalo abundance matching: CDM simulations



tracers: (v_{peak} +bias)-thresholded (sub)haloes in redshift space at z=0 and z=0.1

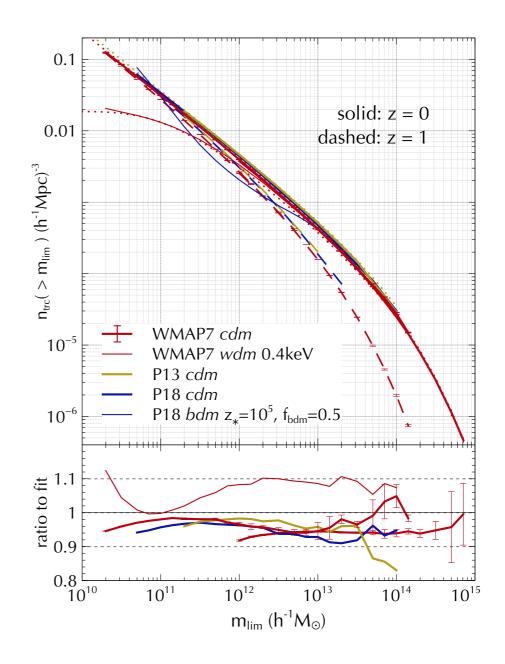
Simulation suite

Gravity-only GADGET-2 N-body runs



Cold Dark Matter

P13 ($\Omega_{\rm m} = 0.315, h = 0.673, \sigma_8 = 0.829$) L150_N512 WMAP7 ($\Omega_{\rm m} = 0.276, h = 0.7, \sigma_8 = 0.811$) L150_N1024, L300_N1024, L600_N1024 P18 ($\Omega_{\rm m} = 0.306, h = 0.678, \sigma_8 = 0.815$) L200_N1024



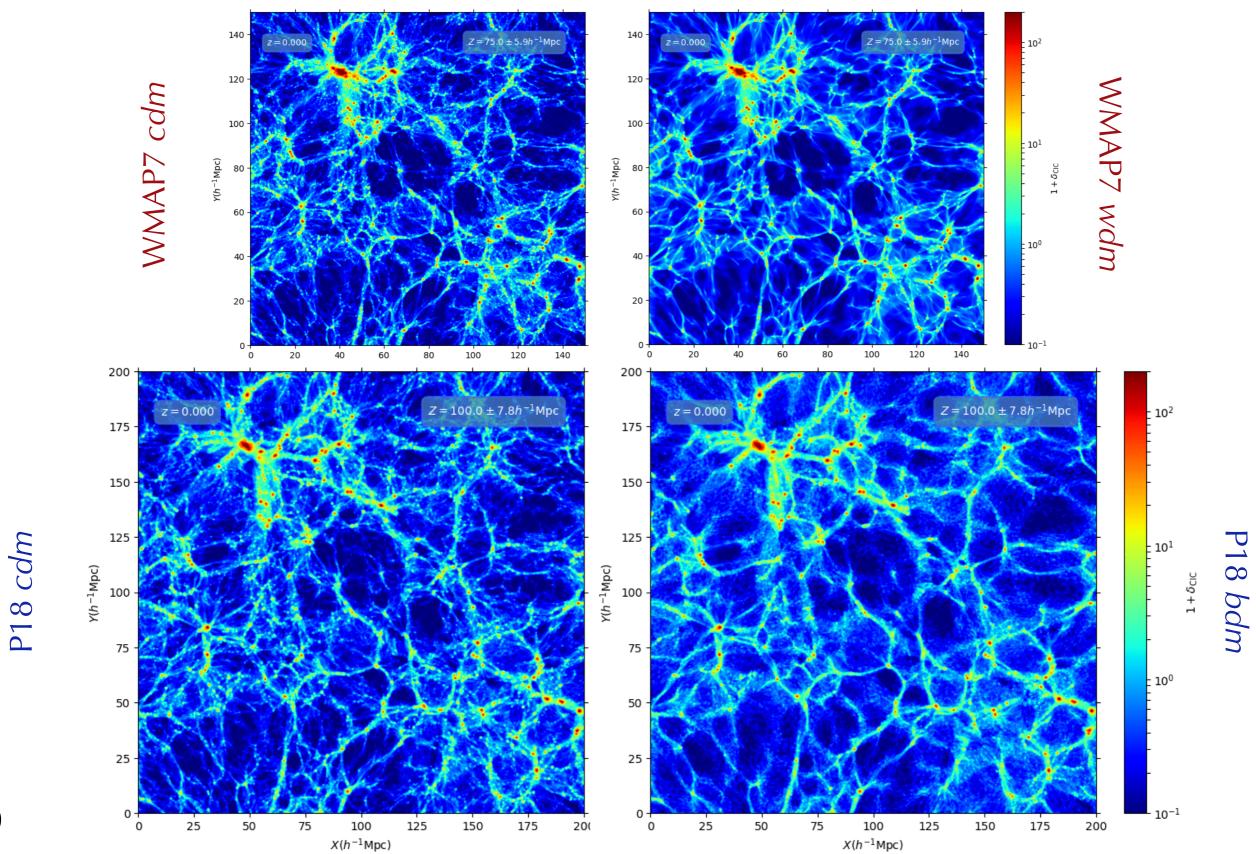
Alternate Dark Matter (paired to CDM)

WMAP7 warm DM $(m_{\rm DM} = 0.4 \, \text{keV})$

L150_N1024

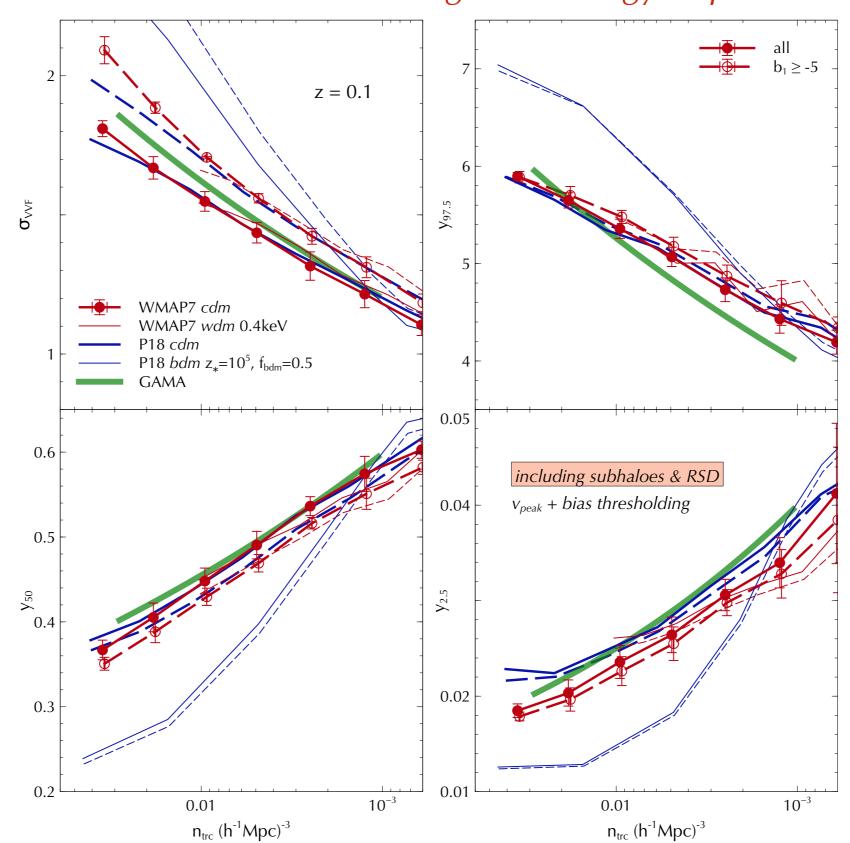
P18 ballistic DM $(z_* = 10^5, f_{\text{bdm}} = 0.5)$ L200_N1024

Simulation suite



Comparison with data

Subhalo abundance matching: cosmology dependence



Conclusions

- ★ Voronoi volume function is a novel probe of nonlinear structure, sensitive to variety of tracer properties
 - Halo mass
 - Substructure content
 - Kinematics (RSD)
 - Large-scale clustering
 - Redshift evolution
- ★ Cosmology dependence (*cdm / wdm*):
 - VVF of mass-selected samples essentially universal
 - Weak cosmology dependence in realistic (SHAM) samples
- ★ Cosmology dependence (*bdm*):
 - Strong sensitivity to oscillatory features in P(k)