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Dark matter halos from cosmic structure formation

Halo growth
Large scales Merger + Tidal

interactions
Cold Dark Matter

Small scales
Re-establish pressure equilibrium

+ Could be self-interacting




Tulin and Yu 2017, with data compiled in Oman+ 2015

Previously, self-interacting dark + ovenons

matter (SIDM) has been used to ?m =y ans

address the % I

 Diversity problem é ol
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THIS TALK

= Thermodynamic properties of

dark matter halos

= Quantifying the correlation
between SIDM and halo

structures

= Halo level characteristics

= A network of dark matter halos



Thermodynamic properties of dark

matter halos

[astro-ph: 2205.03392]
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A thermalized system has a temperature & a Maxwellian velocity
distribution
* A halo of finite mass cannot be a thermalized system

» Scatterings drive the velocity distribution to Maxwellian
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v' An SIDM halo demonstrates
thermodynamic features
v' The “temperature” of a halo

is a function of the radius T / R
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Formulation of a thermodynamic description

SIDM effective here Lal
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Thermodynamic equations



Reconstruct two sides of thermodynamic equations from N-body simulations
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Halo “structures” in terms of
thermodynamic quantities

AE

» T ture — —
emperature As

Our N-body results
supports the use of T=mo?

» Heat Capacity
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Novel radius dependence of SIDM effect in time Reconstructed from N-body
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Thermodynamical explanation

Early times:
Intermediate times:
Late times:

-heat flux + capacity => core formation
+heat flux + capacity => stable core
+heat flux - capacity => core collapse
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Early times: -heat flux + capacity => core formation
Intermediate times: +heat flux + capacity => stable core
Late times: +heat flux - capacity => core collapse

Very late times: +/- heat flux - capacity => catastrophe or stall of
the collapse




Quantifying the correlation between

SIDM and halo structures

[astro-ph: 2205.03392]
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Heat/Energy transport drives the thermodynamics of a halo
« Itis complicated by the inclusion of potential energy

* and by the long-mean-free-path of particle collisions
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Reason:
* Mean free path >> scale radius of the halo
* Heat conduction regulated by size of the halo

In N-body simulation, there is no need for a “long-mean-free-path s, ”
€ Post scattering evolution is governed by gravity
» Can use the weighting kernel of kinetic theory thermal conductivity to

average out a differential cross section

A radius dependent conductivity cross section can be introduced:
Kernel:
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Our equation demonstrates how the halo structures
(velocity and its dispersion) correlate to a differential cross
section
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» The integrand reveals how a differential cross section couples
to the halo velocity and its dispersion



Halo level characteristics

[astro-ph: 2205.03392]

[astro-ph: 2206.05578]
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We can further eliminate the radius dependence

N-body simulation
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SIDM10 approximate the differential cross section pretty well

There is a characteristic velocity dispersion: Vet = Vmax / \/§

Could SIDM effect at large radii be more important at late times?!



Yes!

* No core-collapse
without SIDM at r>0.5
kpc (rs~0.14 kpc)

e Core-collapse

reappears if turning it

Central density (M, /kpc?)

back on at t=10 Gyr

N-body simulation

= do/dcost
— dog/dcost, r<0.5 kpc
== do/dcost#, r=0.5 kpc, t>10 Gyr
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SIDM at large radii plays a crucial role!
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Details of the particle dynamics are hidden in a single halo
Only the velocity dependence couples to the halo
velocity dispersion

A characteristic velocity scale can be used to capture the
majority of the correlation

Only at late times of the core-collapse, there will be a

deviation

Need to study a population of halos to probe details of

the scattering

o Veft = Vmax/\/g

See also,
astro-ph:2204.06568
astro-ph:2205.02957
for a discussion on
the universal
gravothermal
evolution in the
conducting fluid
model
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Particle physics scattering information
can be recovered by considering halos
of different scales

Model O SIDM 1 SIDM 1 SIDM 1
Model 1 SIDM 10 SIDM 1 SIDM 0.1
Model 2 SIDM 100 SIDM 10 SIDM 0.01

» Halo level characteristics can be assigned to nodes in a

graph, enabling graph neural network studies



A network of dark matter halos

[astro-ph: 2205.03392]
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Graph/networks from dark

‘matter halos

Example: N = 40 most massive halos
FIREZ2 m12r

{Nsub,lj Nqub,ﬂj Nsub,ﬁ; Nsub,ﬂ} — {29: 8: ]-: ]-}

If consider N=600
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Our recent work

A random graph model
for the clustering of
halos

Effectively incorporates
the major merger, minor
merger, and tidal effects
Provides a new example

of scale-free network
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[2206.05578] A graph model for the

clustering of dark matter halos (arxiv.orq)
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Possible applications

Topological
data analysis

Graph

neural
network

* Semi-analytic model building
* Metrics based on the adjacency matrix could

have a sensitivity to scale-violating physics

Halo level characteristics can be encoded into weighis of
nodes/links

Graph Fourier Transformation + Low pass filter
h(*+1) = yppaTE®) (hg’“‘), AGGREGATE(®) ({h(®) vy € N(u)}))

Has been applied to study halo shape, orientation, etc

(P Villanueva-Domingo et al. 2021,2022, JagvaralY. et al, 2022)



SUMMARY

SIDM leads to novel
gravothermal evolution of a halo.

The effect of a differential cross
section is largely degenerates
to a constant cross sectionin a
single halo.

A population of halos can be
used to probe the scattering
structures.

It is promising to apply graph-
based techniques to explore
small-scale physics.

OUTREACH

Graph neural network

- Persistent homology

- Deep learning and

referential attachment
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The gravothermal evolution is sensitive to a change in the halo parameters
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Power-law networks from

complex systems

(a) (b)

Network N P 10" ¢ .

s o 1997
AS2001 11,174 2.38 o L e, o 1998
Routers 228,263 2.18 ¢
Gnutella 709 2.19 g
WWW ~2 x 108 2.1/2.7 K
Protein 2,115 2.4 10 | .
Metabolic 778 2.2/2.1 2
Math1999 57,516 2.47 B T Ca—
Actors 225,226 2.3 Cumulative degree distributions of the
e-mail 50812 1.5/2.0 Internet graphs for three different years.

Sources: S. Boccaletti et al. / Physics Reports 424 (2006) 175-308 @



" FIRE2, Sy
Properties (Li Lun, et al 2006) 0-50F " ModBA, Spa
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construct a graph maximizing s.; (Li Lun, et al 2006) naturally leads to

e 5S¢/ S;q,=0.98 (FIRE2 simulations) scale-free networks:

Early attachment
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* 5S¢/ Smax=0.93 (Model constructions) advantage
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Eigenvalue spectra of the adjacency matrix and the Laplacian matrix

* Adjacency matrix: X;; = X;;=1 if i,j nodes are connected

« Normalized Laplacian matrix: L=[-D~1/2XD~1/?
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