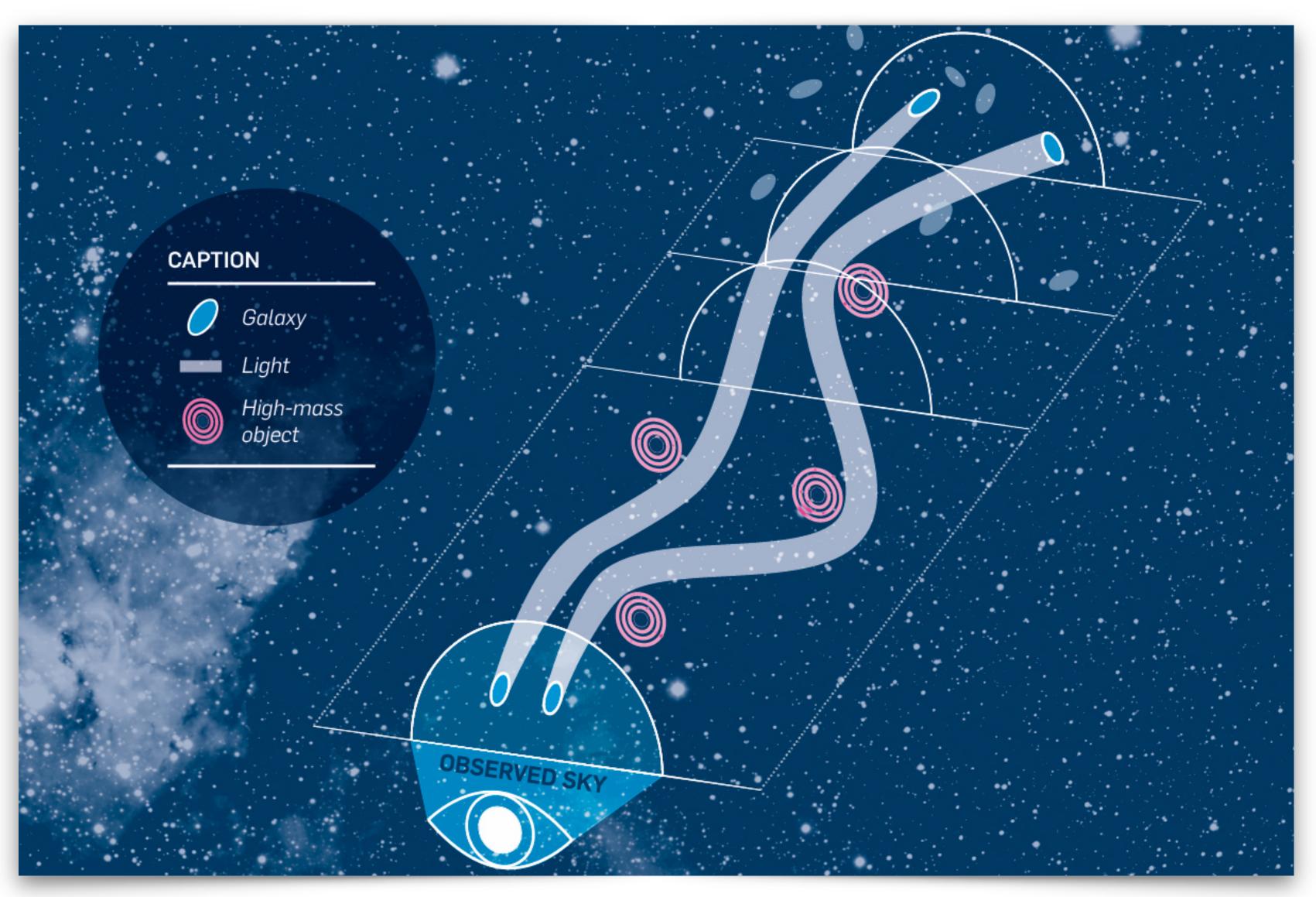
Stage-IV Cosmic Shear and the Curse of Covariate Shift **Cosmology from Home, 2022** Angus H Wright, 24.06.22

GERMAN CENTRE FOR COSMOLOGICAL LENSING

A brief reminder of cosmic shear

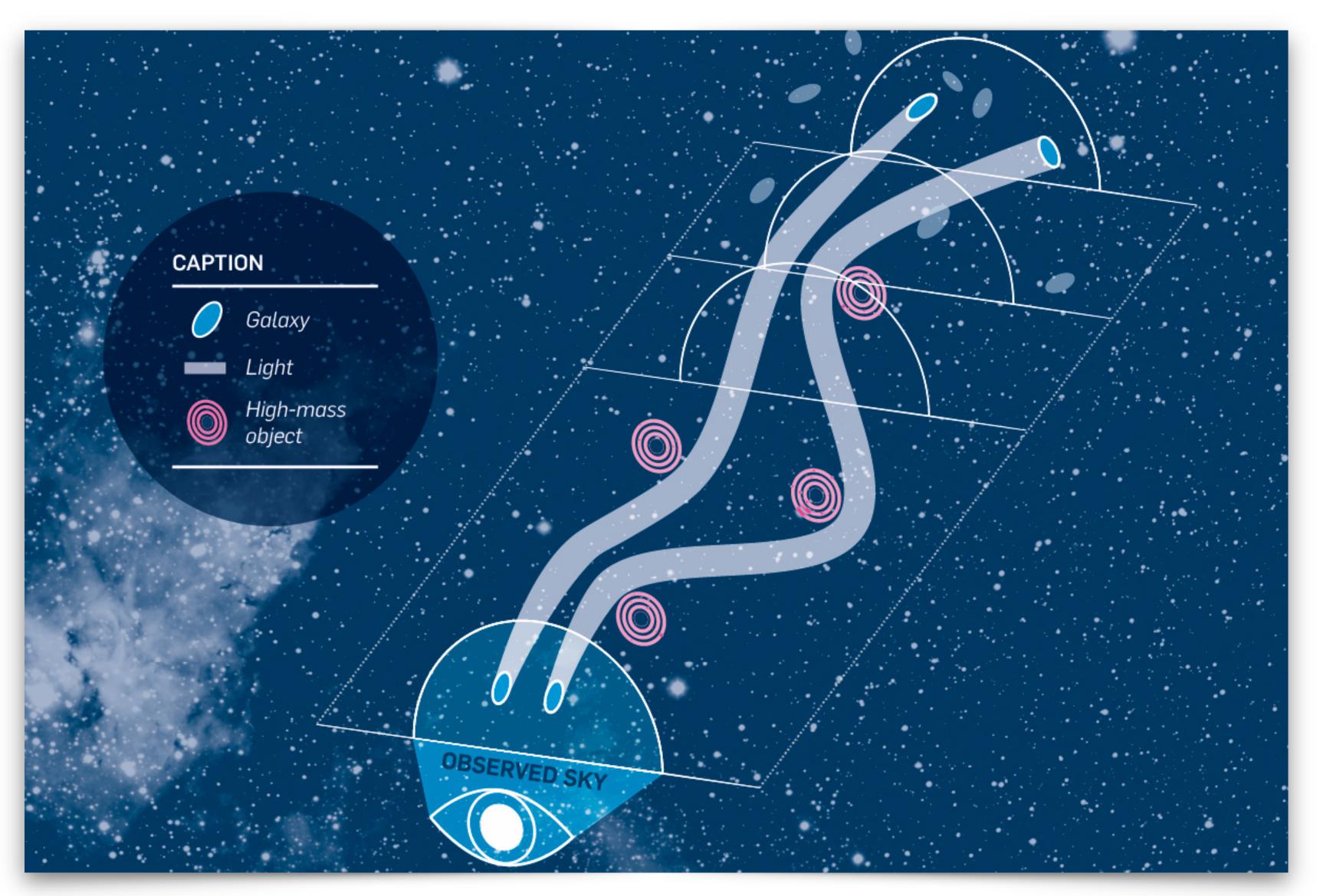
Fundamentals of Cosmic Shear Lensing by large-scale structures



Galaxies in the distant universe have (mostly) randomly distributed shapes

Light is distorted along the line-of-sight by massive structures

Propagation through similar structures imprints coherent distortions on galaxy shapes

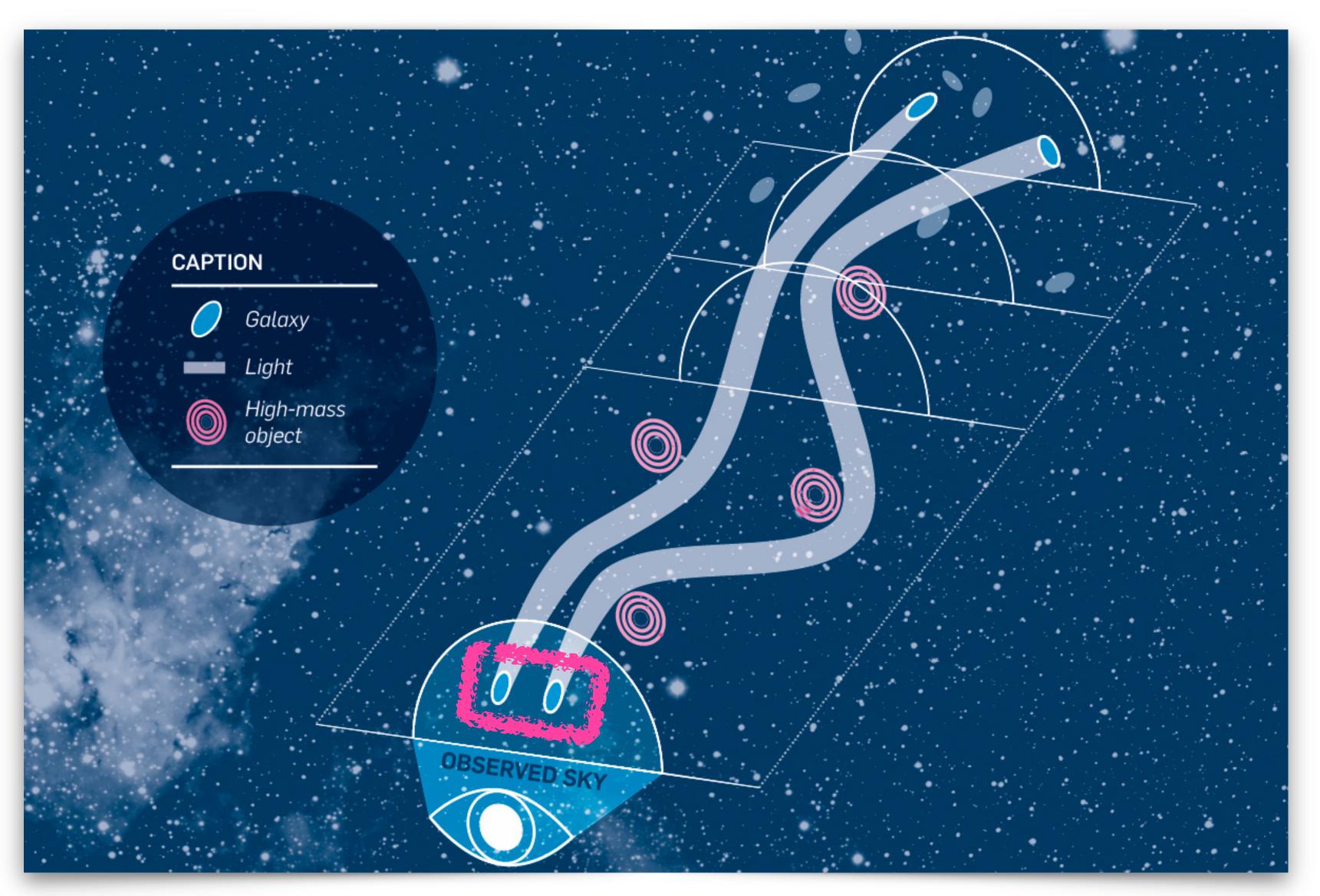


Shape Measurements

Source Redshift Distributions

Modelling of the Source galaxy population

Modelling of baryonic effects

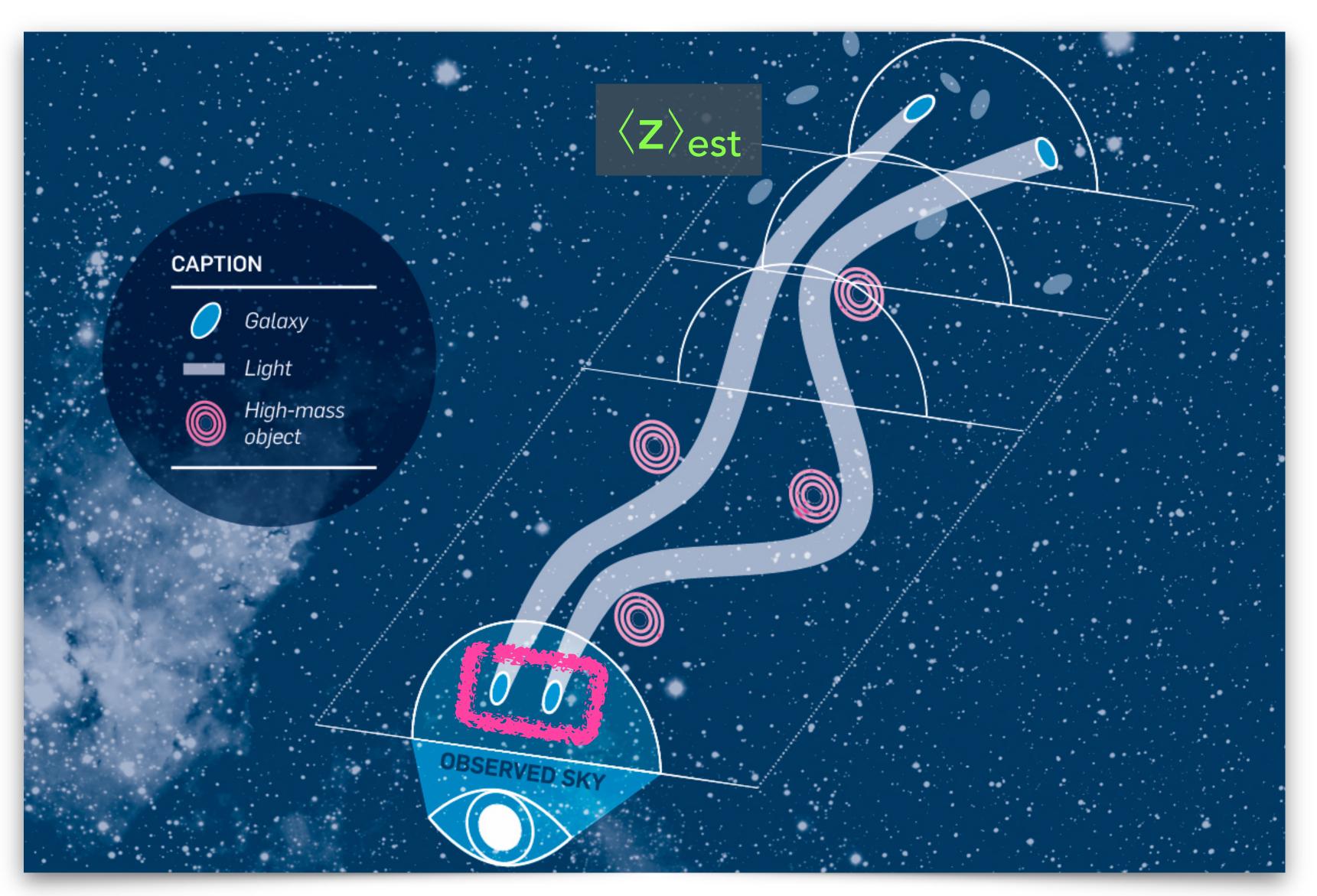


Shape Measurements

Source Redshift Distributions

Modelling of the Source galaxy population

Modelling of baryonic effects

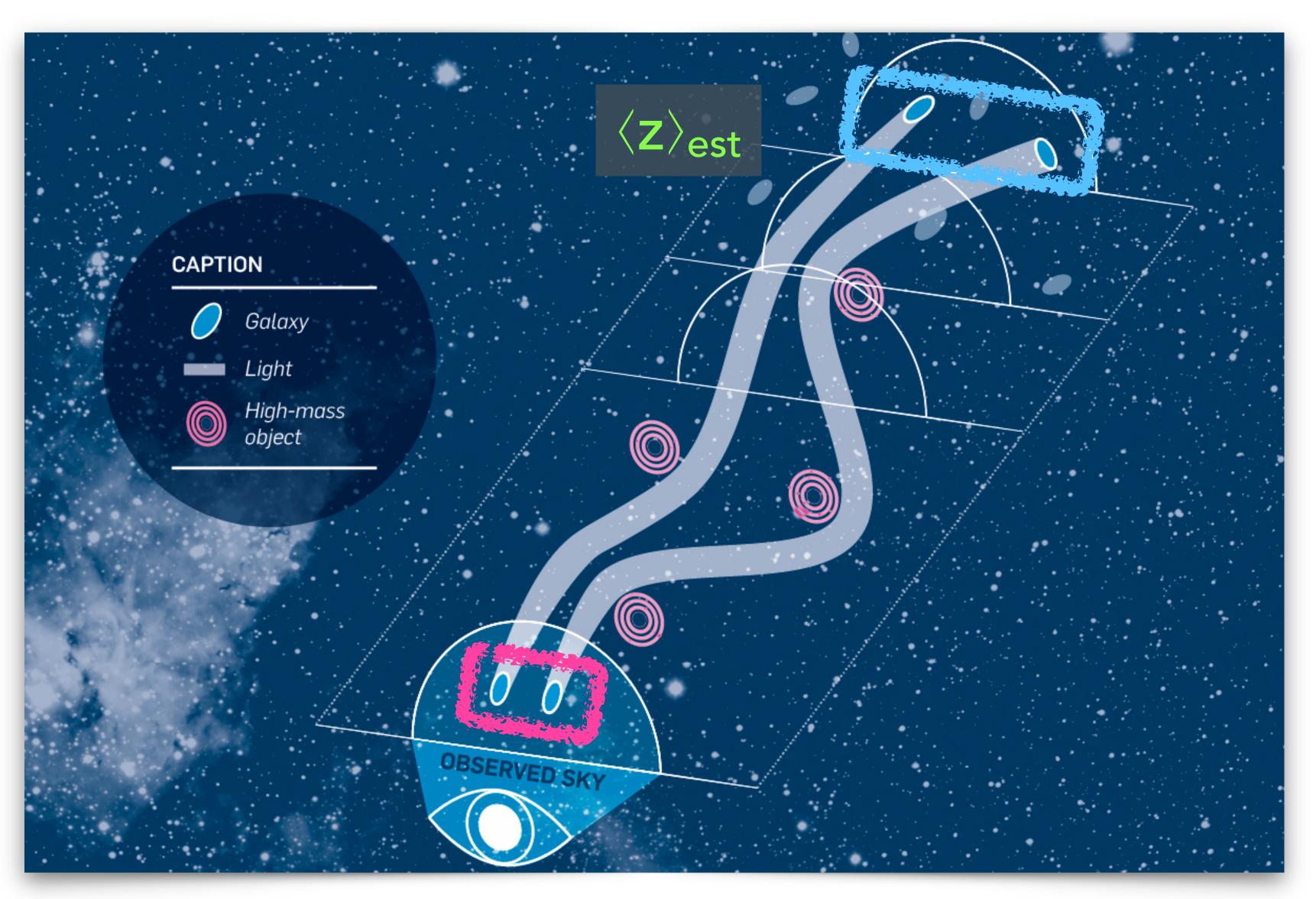


Shape Measurements

Source Redshift Distributions

Modelling of the Source galaxy population

Modelling of baryonic effects

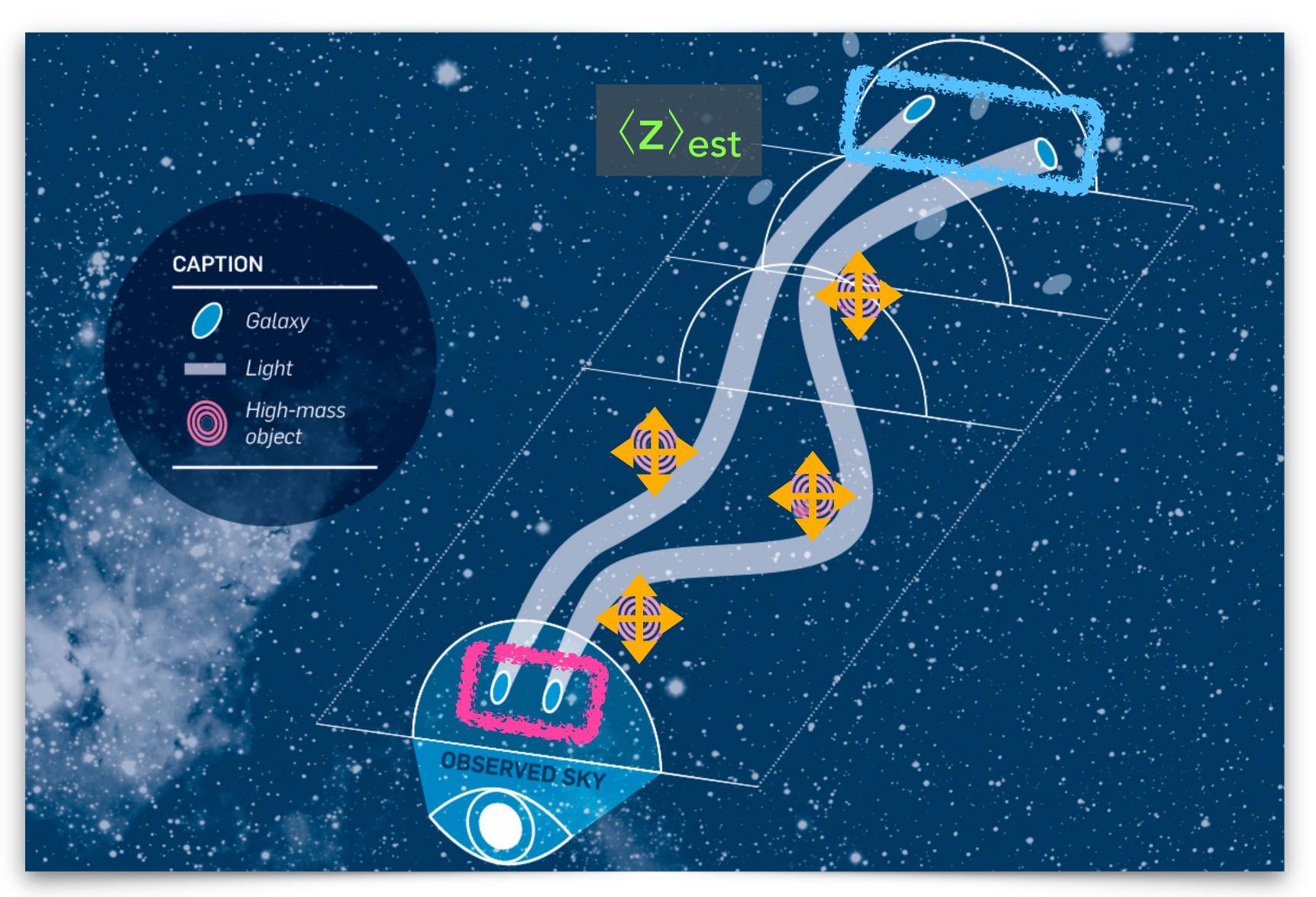


Shape Measurements

Source Redshift Distributions

Modelling of the Source galaxy population

Modelling of baryonic effects



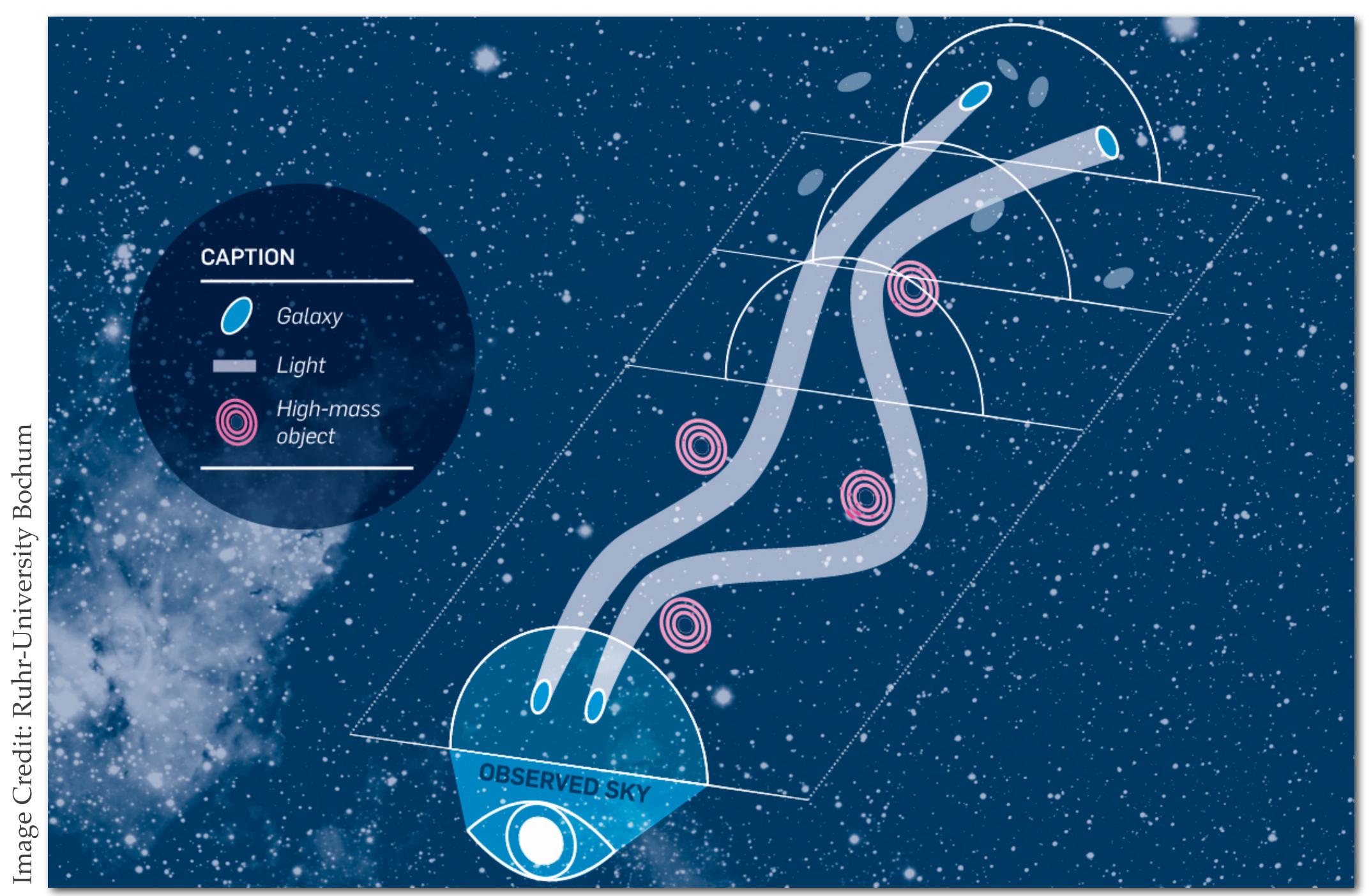
Shape Measurements

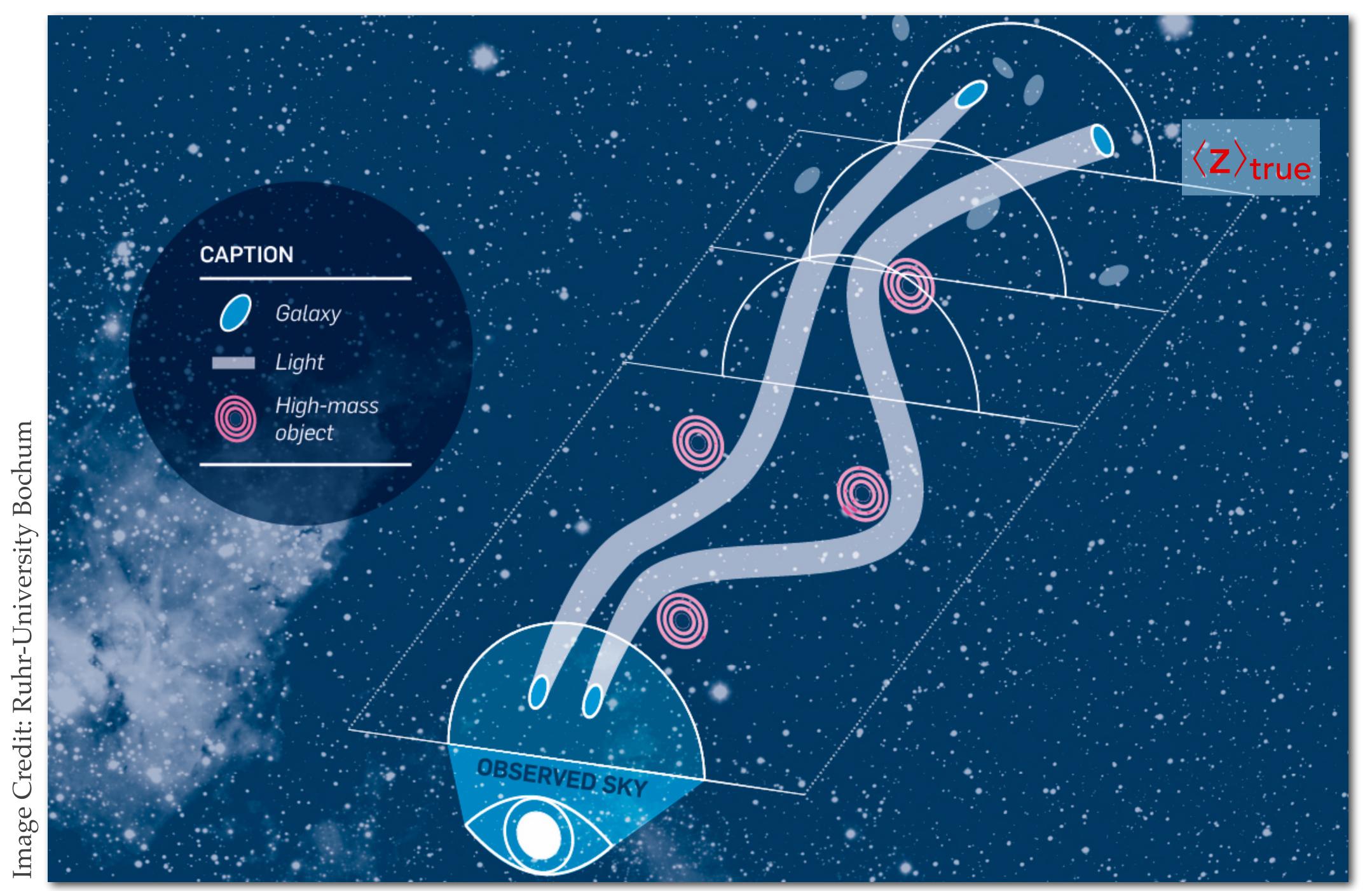
Source Redshift Distributions

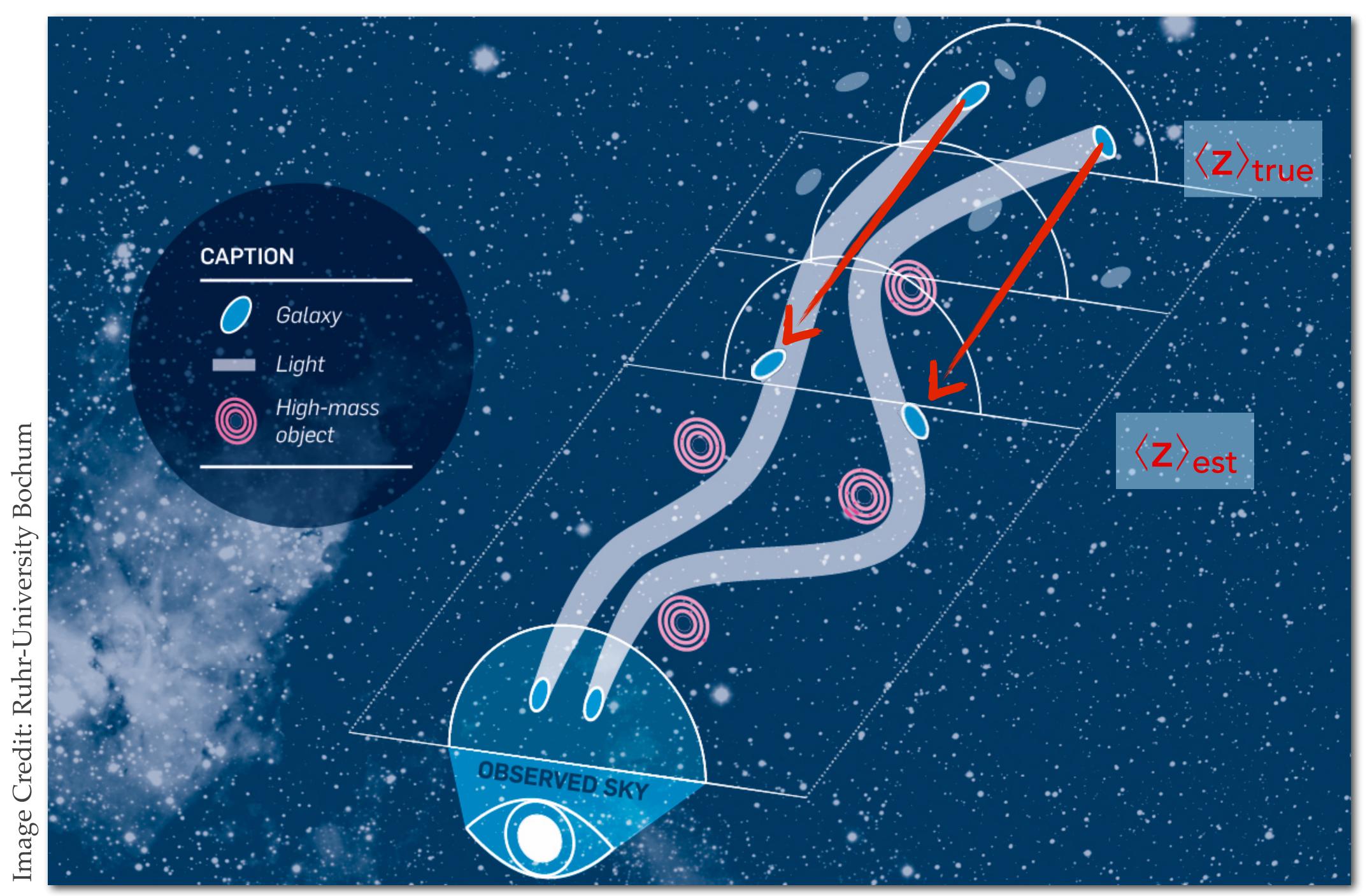
Modelling of the Source galaxy population

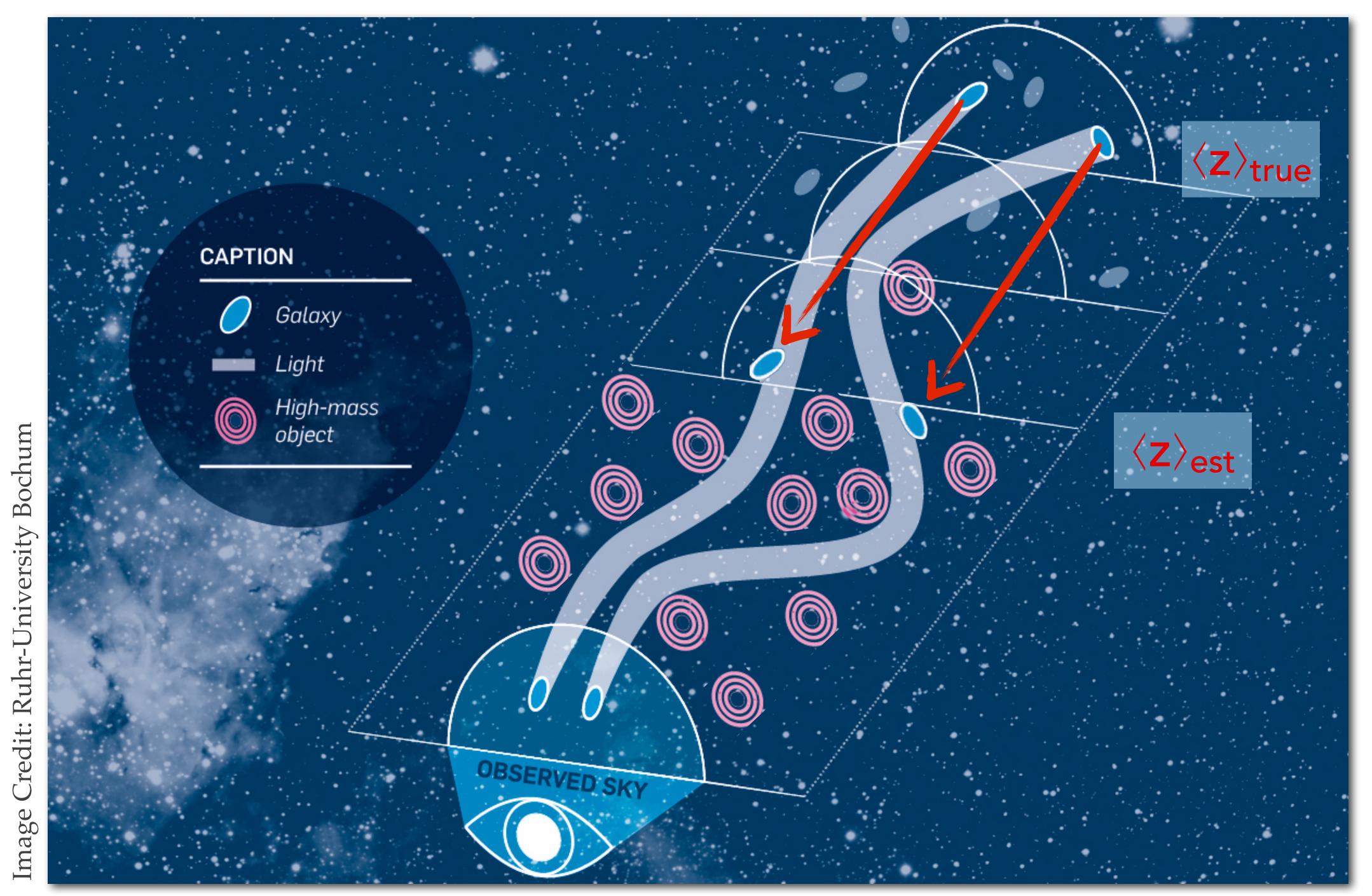
Modelling of baryonic effects

Why is redshift calibration important for cosmic shear?







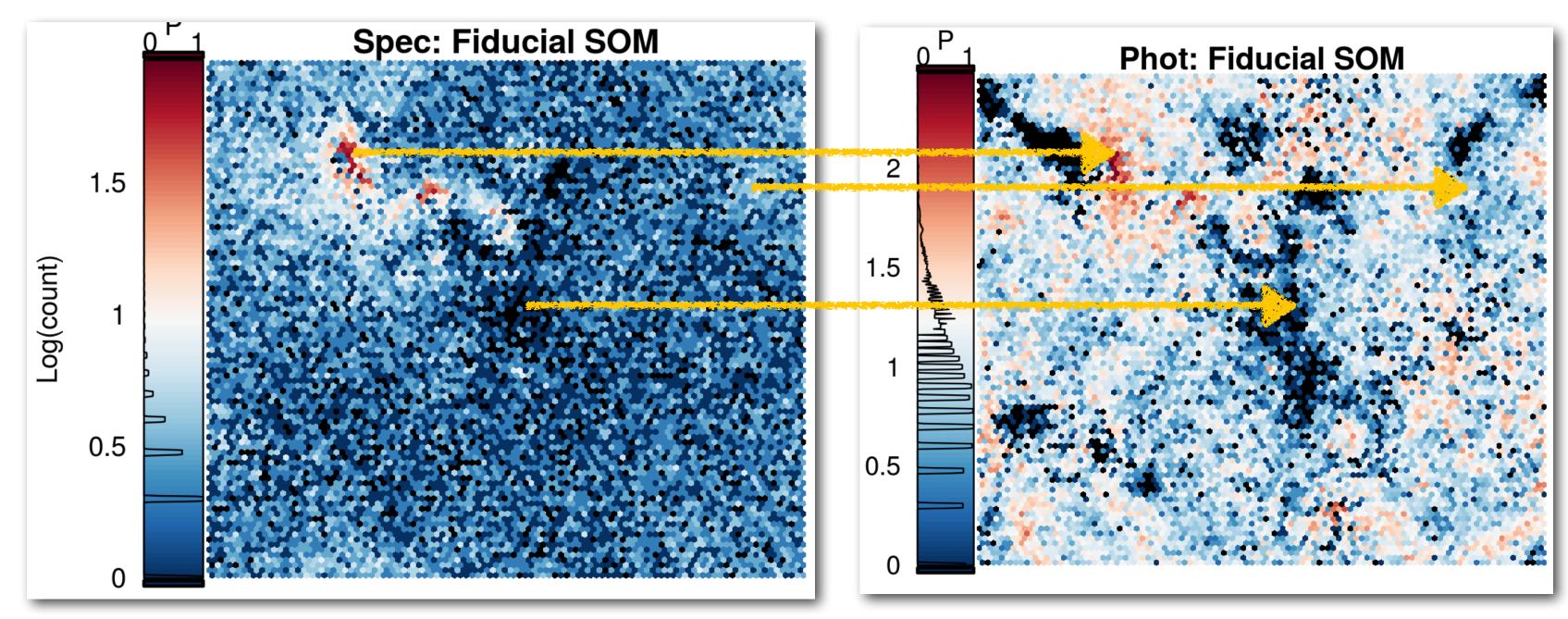


How are redshift distributions calculated?

SOM Redshift Distribution Calibration

Leverages unsupervised machine learning to map two samples together:

- 1. Spectroscopic "calibration sources" with known redshift, to 2. Wide-field "photometric sources" with unknown redshift



KiDS-1000 Wright et at 2020a

A ML classification problem

compute the target-sample redshift-distribution $p_{tg}(z)$:

$$p_{tg}(z) = \sum_{c} p_{tg}(z) = \sum_{c} p_{tg}(z)$$

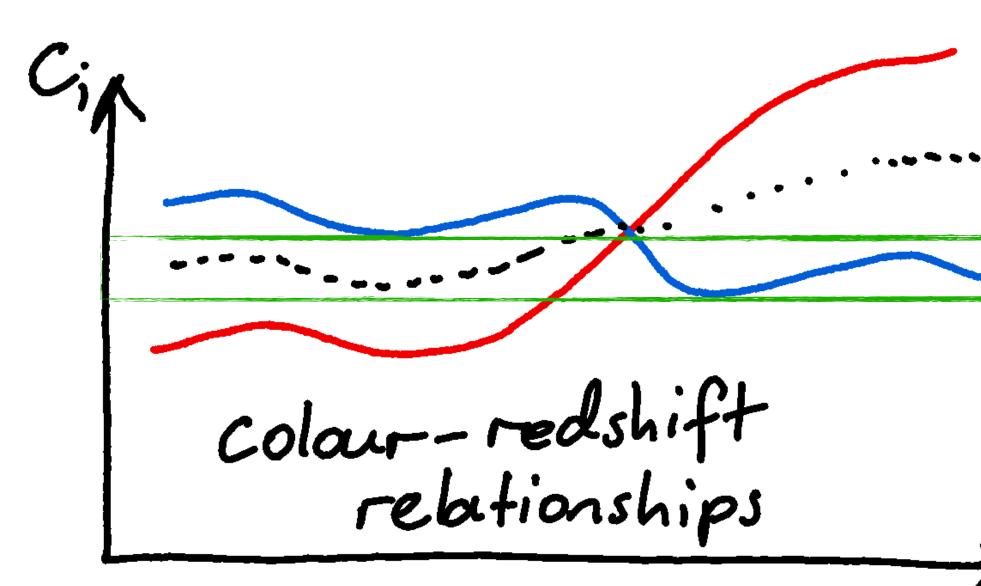
The conditional probability of redshift given a cell (i.e. colour) $p(z \mid c) = p(c \mid z)p(z)/p(c)$ is dependent on: 1. the likelihood of observing particular colours at a given redshift; 2. the "prior probability" of the sample as a function of redshift; and

- We use unsupervised machine learning to associate sources into cells c, and
 - $p_{tg}(z \mid c)p_{tg}(c)$
 - $p_{\rm tr}(z \mid c) p_{\rm tg}(c)$

- 3. the "covariate" probability distribution of the sample as a function of colour.

Mapping between Colour and Redshift Made possible because of the colour-redshift relation

P(z|c)

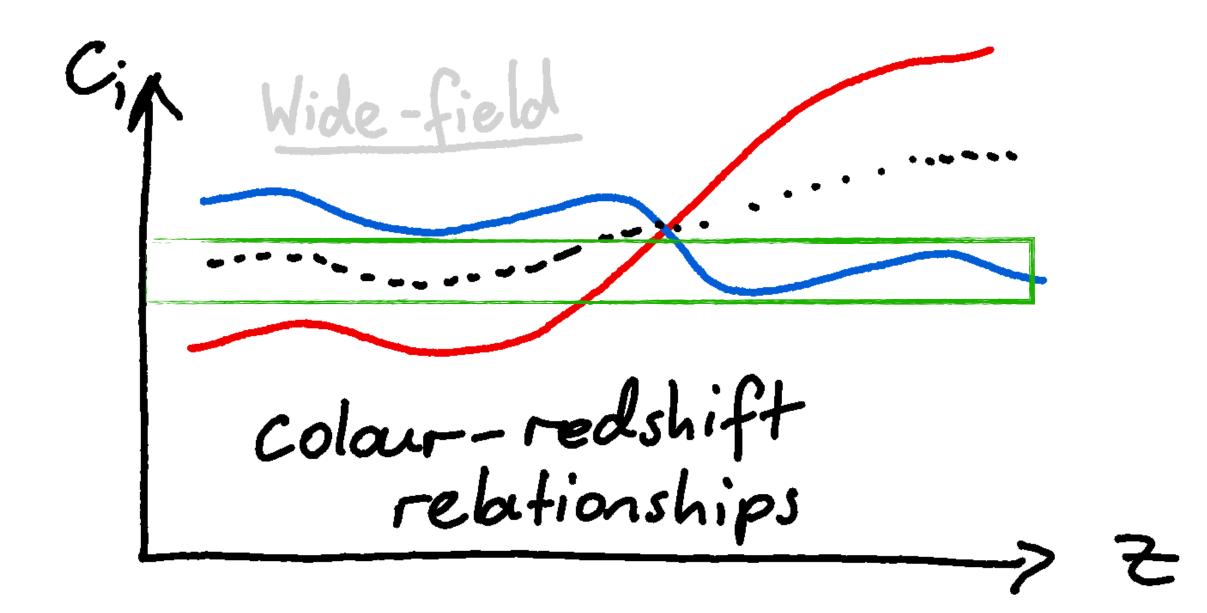


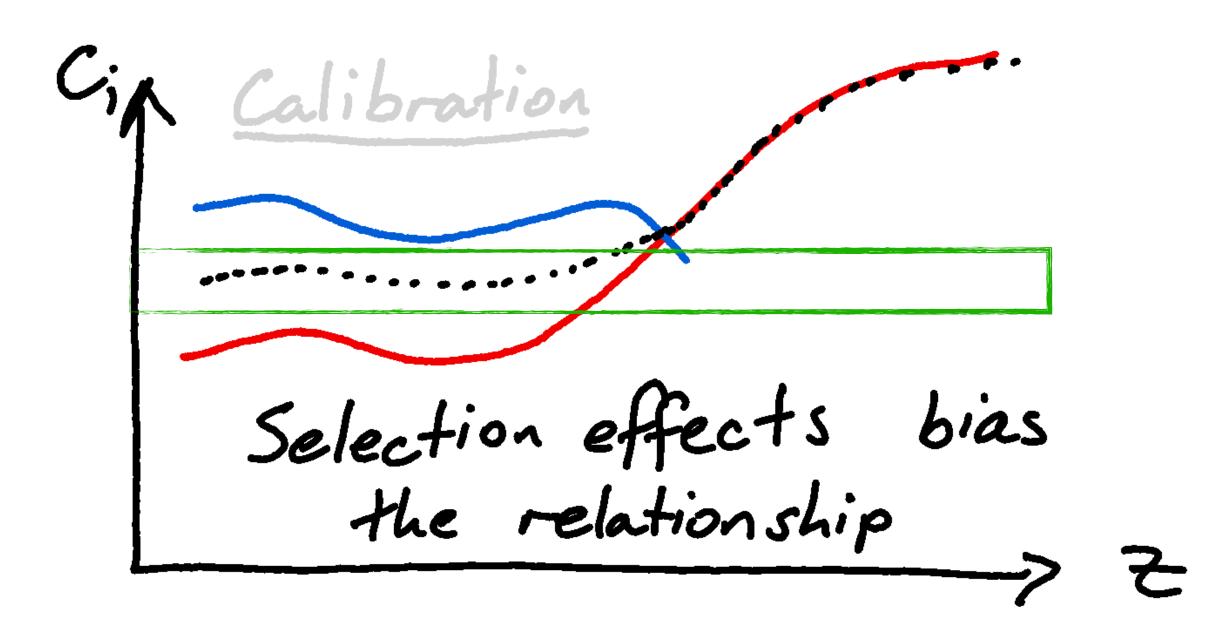
The probability of a source being at redshift z given its observed colours c

"Red" galaxy SED "Blue" galaxy SED One colour cell

ッと

The Problem: Covariate & Prior Probability Shift 11 Within a SOM cell, the distribution of redshift & colour differs between the calibration and wide-field samples





The Problem: Covariate & Prior Probability Shift 11 Within a SOM cell, the distribution of redshift & colour differs between the calibration and wide-field samples

そ

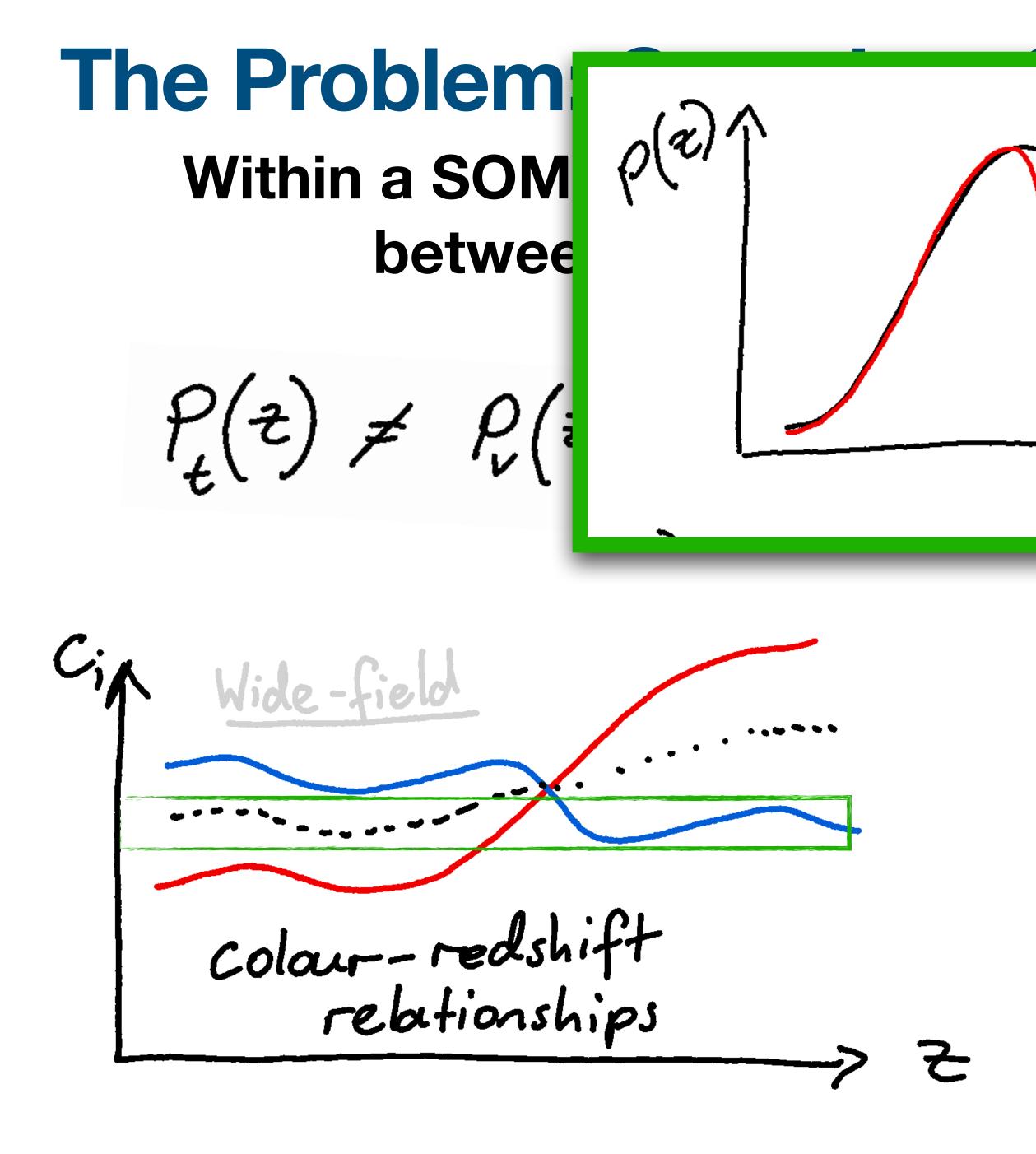
 $P_1(z) \neq P_v(z)$

relationships

The overall distribution of redshift differs between the samples, so the mapping at fixed colour becomes biased

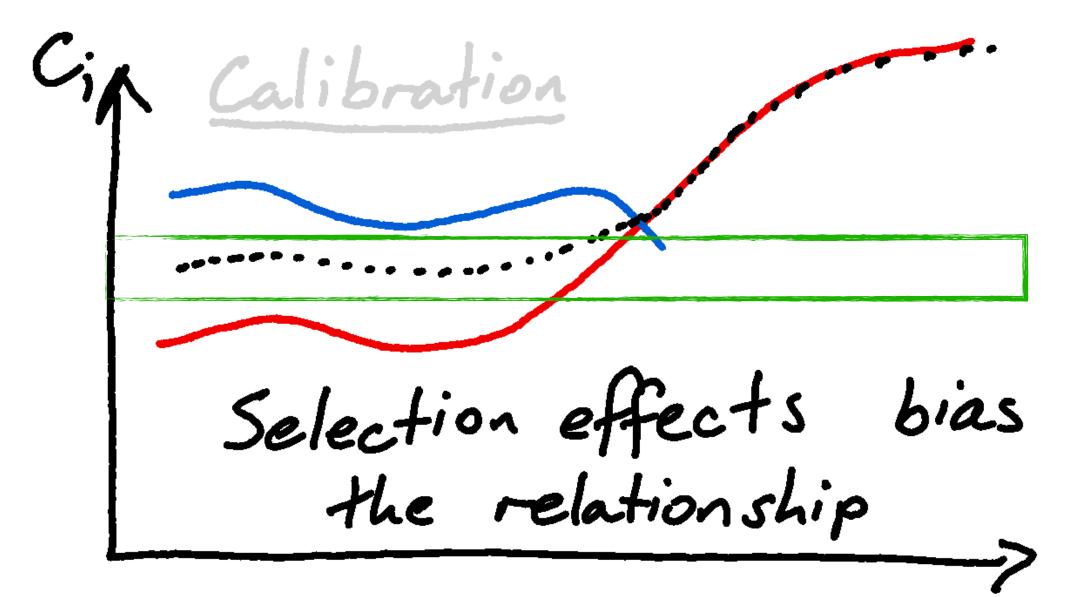
the relationship

と



ability Shift 11 wide field Calibration Calibration samples

ft differs between the colour becomes biased



そ

So: essentially a ML classification problem 12

There are three classic failure modes in ML regression/ classification problems:

- **1.** Covariate shift: $p_{tr}(z | c)$
- 2. Prior Probability shift: 1
- 3. Concept drift: $p_{tr}(z \mid c) \neq$

These all affect redshift calibration in various ways.

- 1. Targeting in spectroscopy differs from photometry
- 2. Redshift success and confidence is systematic
- 3. SOM cells have non-zero size the above effects persist below the cell level

$$p_{tg}(z \mid c) \& p_{tr}(c) \neq p_{tg}(c)$$

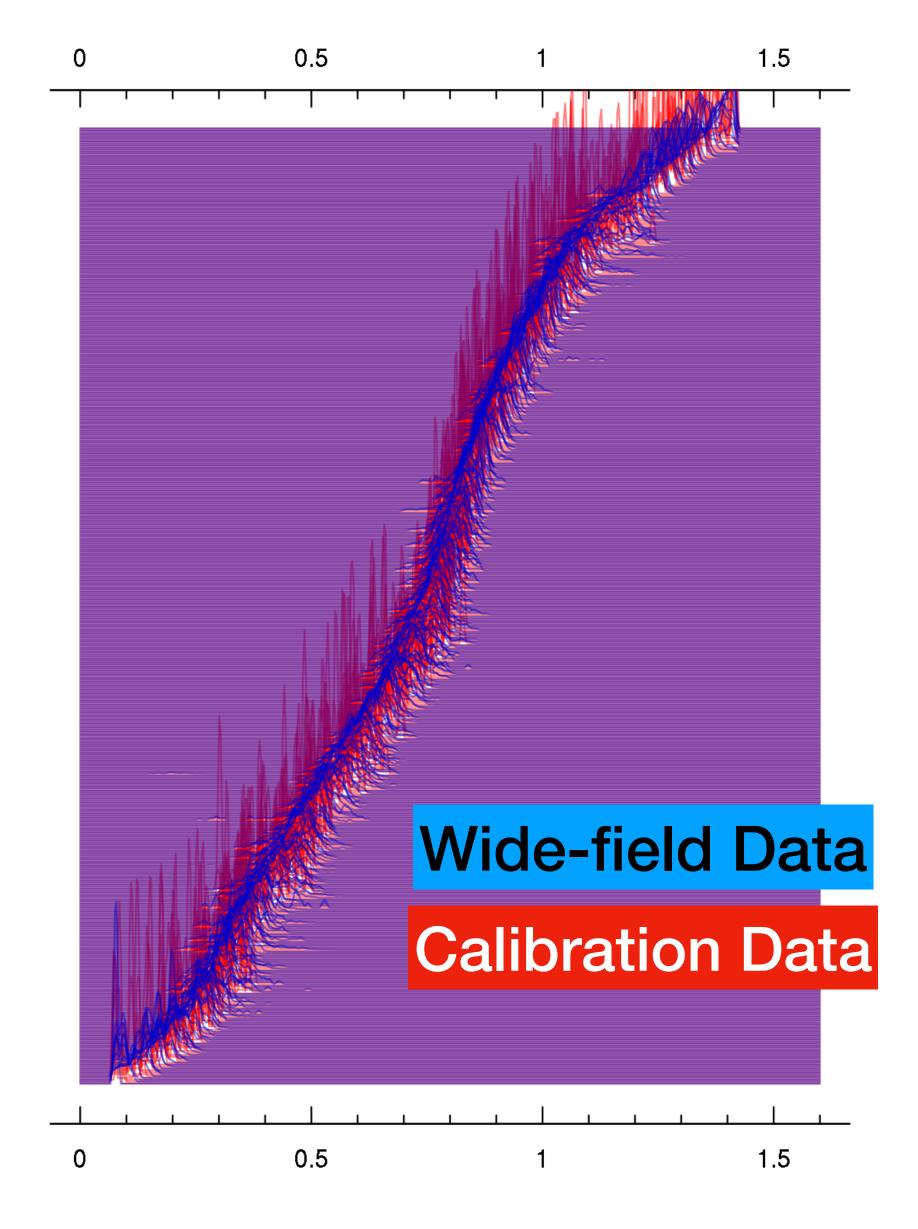
$$p_{tr}(c \mid z) = p_{tg}(c \mid z) \& p_{tr}(z) \neq p_{tg}(z)$$

$$\neq p_{tg}(z \mid c)$$

Are our methods sufficient for Stage-IV (e.g. Euclid)?

- Here I construct two simulated samples:
 1. A realistic spec-z calibration sample;
 - 2. A realistic wide-field shear sample
- And I assume perfect photometry
- Cells are not delta-functions in redshift:
 - Non-zero width allows selections at the within-cell level to play a role
 - Wider/more complex cells require more spectra to fairly sample the full Nz
- Cells are not sparse-sampled by spectra:
 spec-z targeting, success, confidence selections all contribute

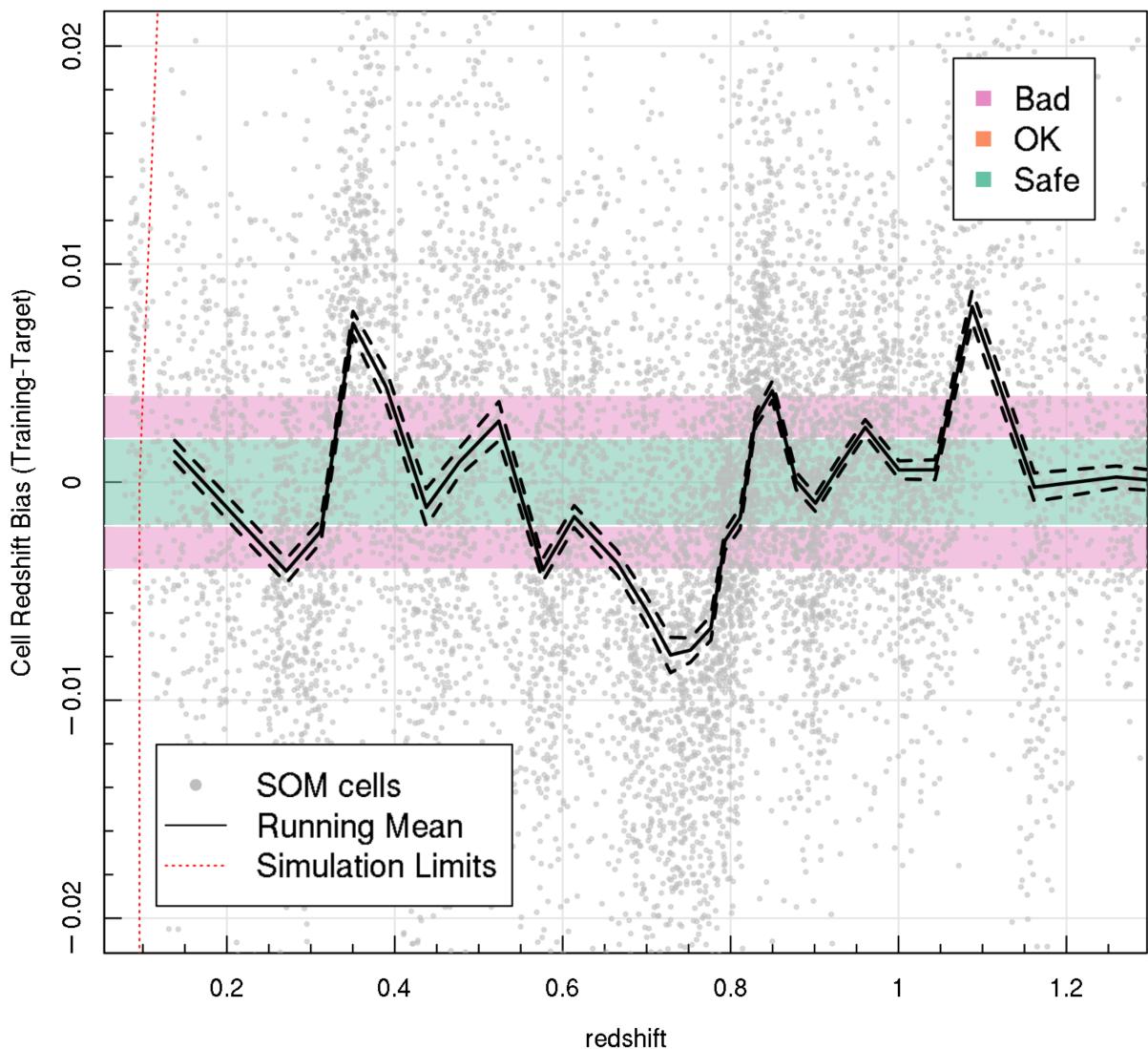
No



Cell Nz

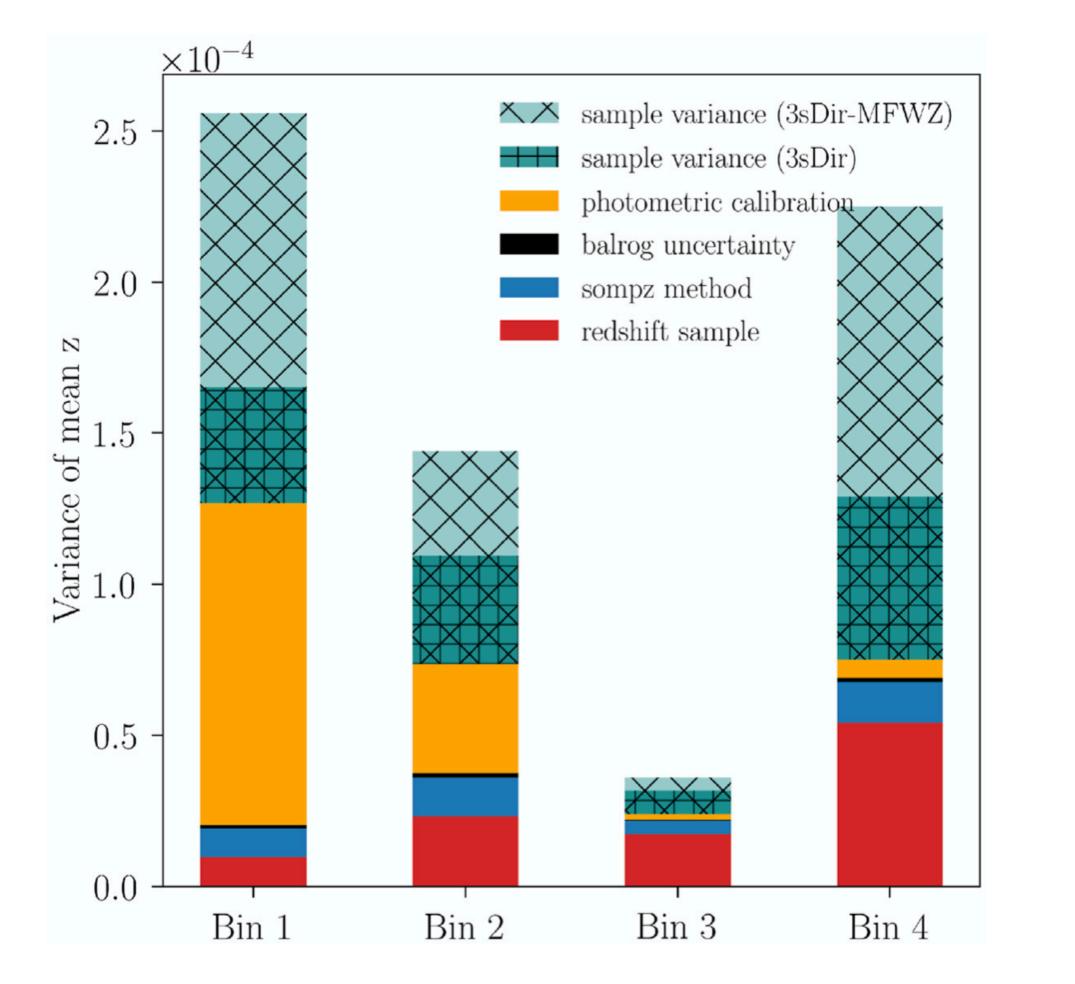
- Here I construct two simulated samples: 1. A realistic spec-z calibration sample;
 - 2. A realistic wide-field shear sample
- And I assume perfect photometry
- Cells are not delta-functions in redshift:
 - Non-zero width allows selections at the within-cell level to play a role
 - Wider/more complex cells require more spectra to fairly sample the full Nz
- Cells are not **sparse-sampled** by spectra: - spec-z targeting, success, confidence selections all contribute
- At the requirements of Euclid: these selection effects alone **exceed** the allowed error budget

Cell Bias for Realistic Calibration Samples (Model Photom)

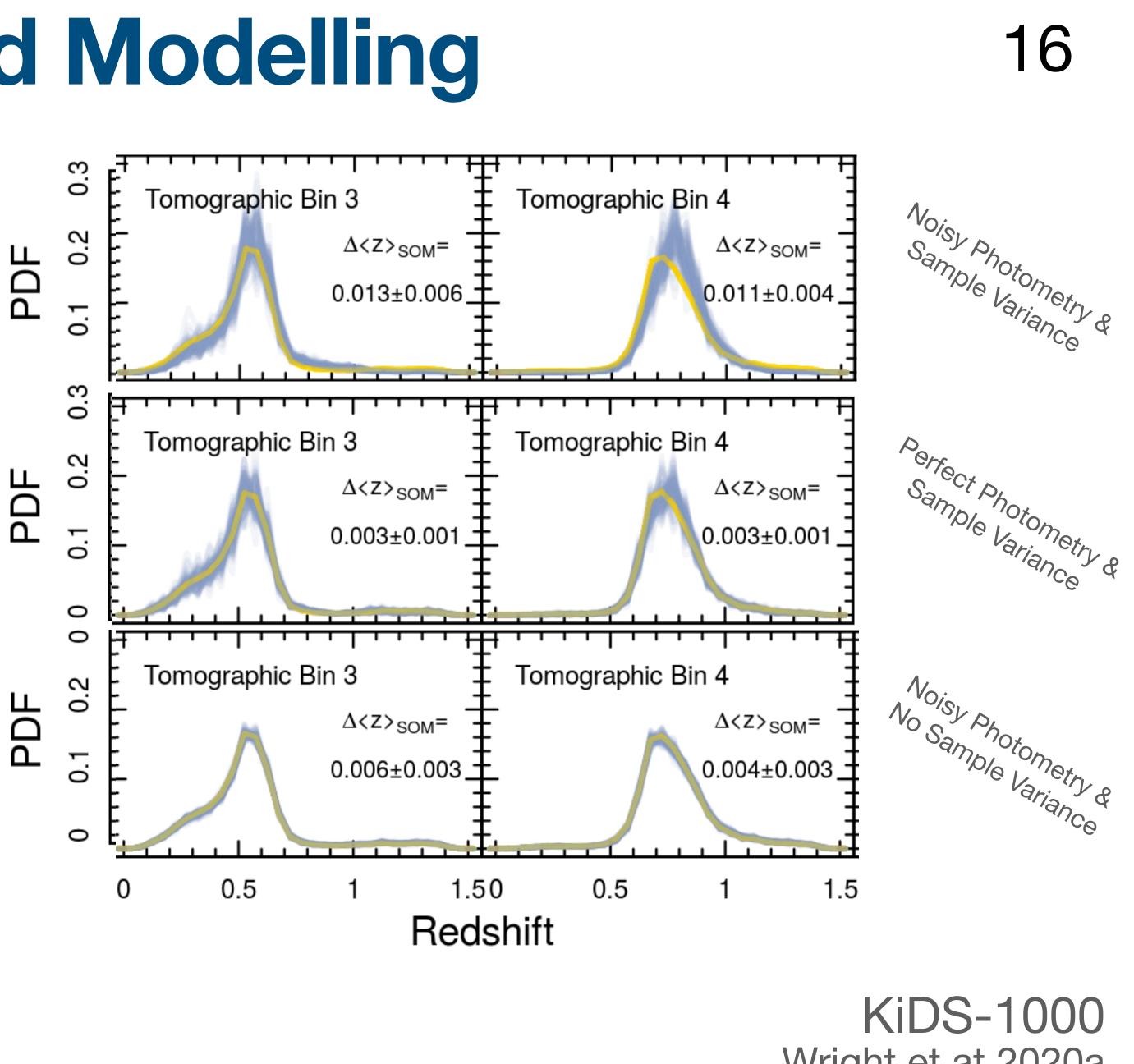


What can we do?

Forward Modelling

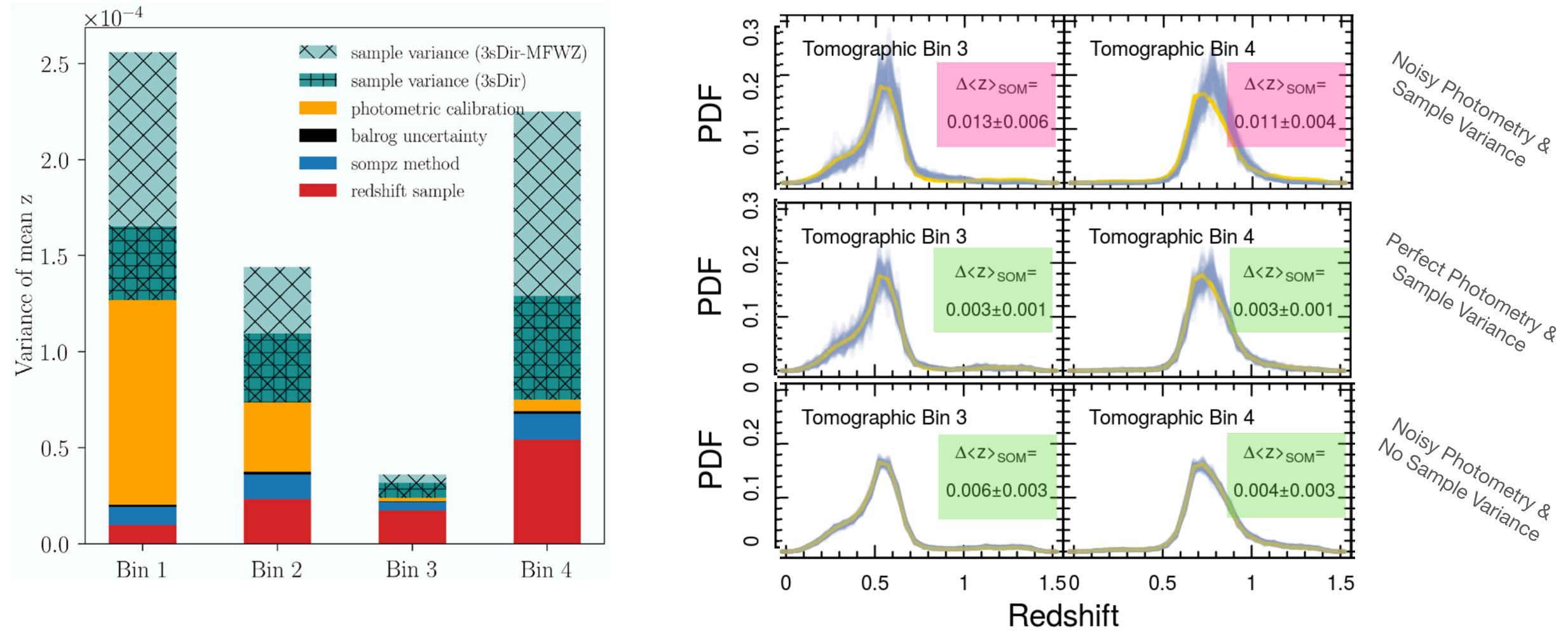


DESY3 Myles et al (2021)



Wright et at 2020a

Forward Modelling



DESY3 Myles et al (2021) One only sees these biases when you **jointly** simulate all expected systematic effects

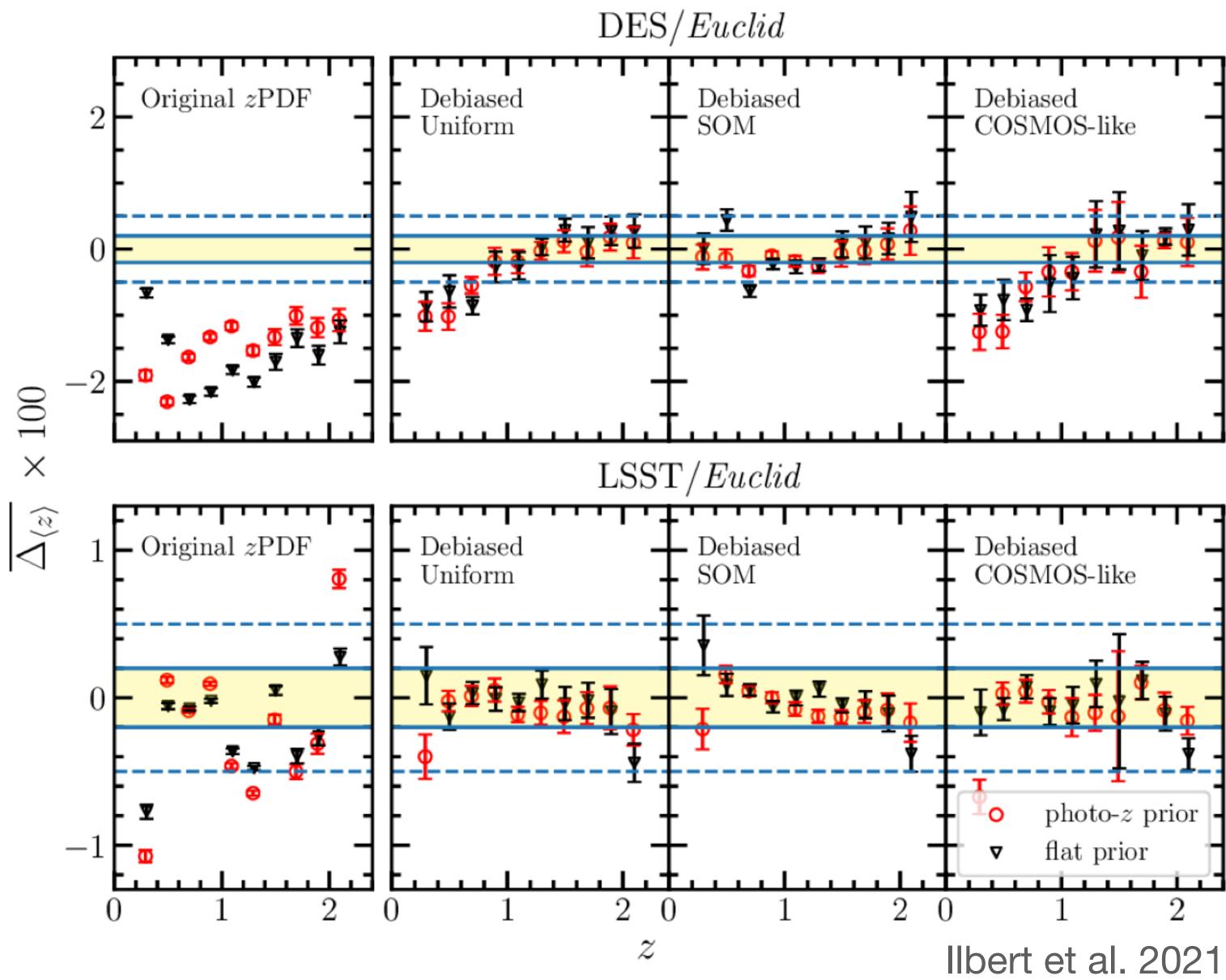
KiDS-1000 Wright et at 2020a

Use population statistics to de-bias cells

Requires population statistics to be robust per cell (or group of cells).

Is more robust to failures of the calibration sample (which is good!)

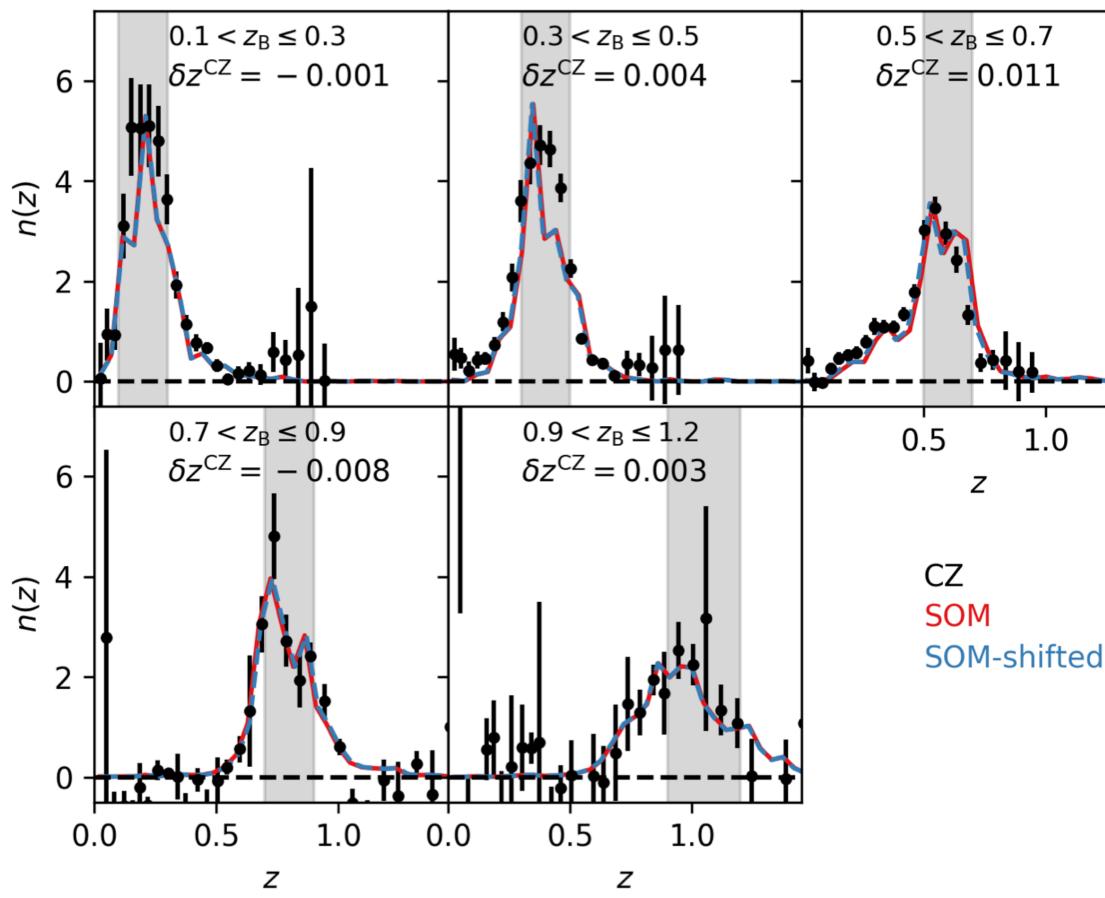
Requires high-quality initial photo-z (DES not sufficient)



Leverage multiple estimation techniques

Clustering-based estimation methods have different selections

KiDS-1000

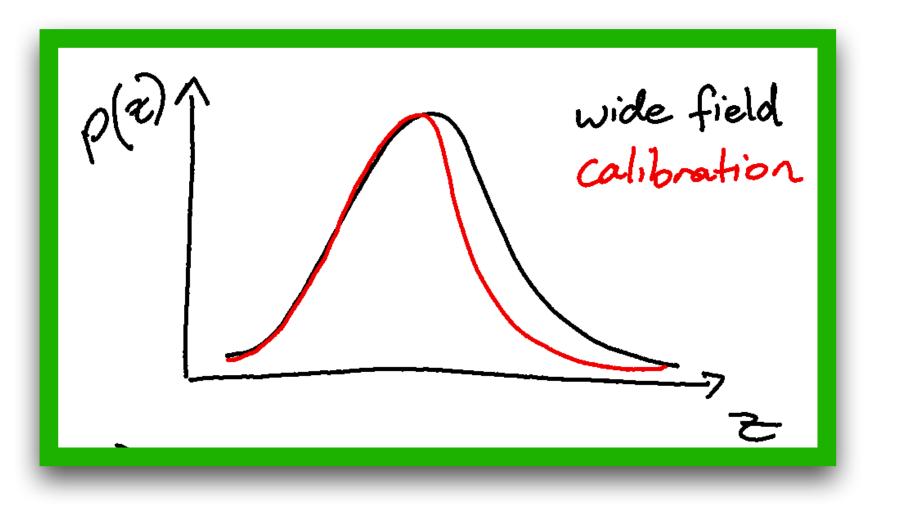


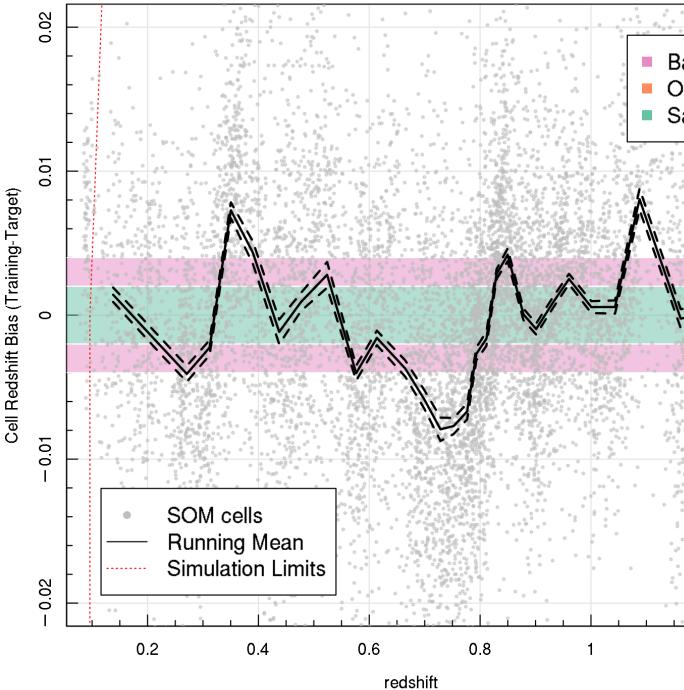
Uses the spatial cross correlation with a reference sample to produce Nz

Reference sample is generic: need not be matched to the colour/magnitude range of the target sample

Marginalisation over evolution of galaxy bias is a complication

- Cosmic shear is a valuable tool for exploring the matter power spectrum
- Machine learning estimation of source redshift distributions is a valuable tool
- But sampling and selection biases in spec-z samples lead to significant covariate shift within individual SOM cells.
- For Stage-III surveys, mitigation methods are currently suitable.
- For Stage-IV surveys like Euclid, they are not.
- Accurate cosmology with Euclid will require development of more comprehensive methods, such as combined clustering and colour-based approaches.





0 0	0 0	0
ad K afe		0
0		0
0	0	000
0	° °	0
8	° ° °	00
	0000 0000 0000	
8 9		0 0 0 0 00
	20	
		- 88
6 0 0 0 0		
	98 q	0000
,°° ,	0	° ° ° °
000		8
000		0
000		0
000	0	
0		
0 0		
0		
1.	2	