
Angus H Wright, 24.06.22

Stage-IV Cosmic Shear and the 
Curse of Covariate Shift 
Cosmology from Home, 2022

1



A brief reminder of cosmic shear
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Fundamentals of Cosmic Shear
Lensing by large-scale structures 
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Image Credit: Ruhr-University Bochum 

Galaxies in the distant 
universe have (mostly) 
randomly distributed 

shapes  

Light is distorted along the 
line-of-sight by massive 

structures  
 

Propagation through 
similar structures imprints 
coherent distortions on 

galaxy shapes



Robust Cosmic Shear Requirements
What do you need to get right?
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Shape Measurements 

Source Redshift 
Distributions  

Modelling of the Source 
galaxy population 

Modelling of baryonic 
effects
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Why is redshift calibration 
important for cosmic shear?
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How are redshift distributions 
calculated?
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SOM Redshift Distribution Calibration 
Leverages unsupervised machine learning to map two 
samples together:

1. Spectroscopic “calibration sources” with known redshift, to 

2. Wide-field “photometric sources” with unknown redshift 

KiDS-1000
Wright et at 2020a
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A ML classification problem
We use unsupervised machine learning to associate sources into cells , and 
compute the target-sample redshift-distribution : 





The conditional probability of redshift given a cell (i.e. colour) 
 is dependent on:


1. the likelihood of observing particular colours at a given redshift;

2. the “prior probability” of the sample as a function of redshift; and

3. the “covariate” probability distribution of the sample as a function of colour.  

c
ptg(z)

ptg(z) = ∑
c

ptg(z |c)ptg(c)

≈ ∑
c

ptr(z |c)ptg(c)

p(z |c) = p(c |z)p(z)/p(c)
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Mapping between Colour and Redshift

The probability of a source being at 
redshift z given its observed colours c

“Red” galaxy SED

“Blue” galaxy SED

Made possible because of the colour-redshift relation

One colour cell
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The Problem: Covariate & Prior Probability Shift
Within a SOM cell, the distribution of redshift & colour differs 

between the calibration and wide-field samples 
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So: essentially a ML classification problem
There are three classic failure modes in ML regression/
classification problems: 


1. Covariate shift:  

2. Prior Probability shift:  

3. Concept drift: 


These all affect redshift calibration in various ways. 


1. Targeting in spectroscopy differs from photometry 

2. Redshift success and confidence is systematic 

3. SOM cells have non-zero size

➡ the above effects persist below the cell level

ptr(z |c) = ptg(z |c) & ptr(c) ≠ ptg(c)
ptr(c |z) = ptg(c |z) & ptr(z) ≠ ptg(z)

ptr(z |c) ≠ ptg(z |c)
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Are our methods sufficient for   
Stage-IV (e.g. Euclid)?

13



No
• Here I construct two simulated samples:


1. A realistic spec-z calibration sample;

2. A realistic wide-field shear sample


• And I assume perfect photometry 

• Cells are not delta-functions in redshift: 
- Non-zero width allows selections at  
  the within-cell level to play a role  
- Wider/more complex cells require  
  more spectra to fairly sample the full  
  Nz 


• Cells are not sparse-sampled by spectra:  
- spec-z targeting, success, 
  confidence selections all contribute Calibration Data

Wide-field Data
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- spec-z targeting, success, 
  confidence selections all contribute Calibration Data

Wide-field Data

• At the requirements of Euclid: these selection 
effects alone exceed the allowed error 
budget  
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What can we do? 
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Forward Modelling

DESY3
Myles et al (2021)

KiDS-1000
Wright et at 2020a

Perfect Photometry &  

Sample Variance

Noisy Photometry &  

No Sample Variance

Noisy Photometry &  

Sample Variance
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One only sees these biases when you jointly 
simulate all expected systematic effects 
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Use population statistics to de-bias cells

Ilbert et al. 2021

Requires population 
statistics to be robust per 

cell (or group of cells). 


Is more robust to failures of 
the calibration sample  

(which is good!)


Requires high-quality initial 
photo-z (DES not sufficient)
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Leverage multiple estimation techniques
Clustering-based estimation methods have different selections

Uses the spatial cross 
correlation with a reference 

sample to produce Nz


Reference sample is generic: 
need not be matched to the 

colour/magnitude range of the 
target sample


Marginalisation over evolution 
of galaxy bias is a complication
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Summary
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• Cosmic shear is a valuable tool for exploring the matter 
power spectrum  


• Machine learning estimation of source redshift 
distributions is a valuable tool


• But sampling and selection biases in spec-z samples 
lead to significant covariate shift within individual SOM 
cells.


• For Stage-III surveys, mitigation methods are currently 
suitable. 


• For Stage-IV surveys like Euclid, they are not. 


• Accurate cosmology with Euclid will require 
development of more comprehensive methods, such 
as combined clustering and colour-based approaches. 


