

Boostless Cosmological Collider Bootstrap

with Guilherme Pimentel, arXiv:2205.00013

Dong-Gang Wang (王东刚)

DAMTP Cambridge

Cosmology from Home 2022

Goal:

Find all Cosmological Colliders using the **Bootstrap** method, and identify the <u>large signals</u> and <u>new shapes</u> for upcoming observations.

Triangles in the Sky

3-point correlation function in the primordial perturbations

primordial bispectrum: the Fourier transf. of the 3pt correlation function

$$\langle \zeta_{\mathbf{k_1}} \zeta_{\mathbf{k_2}} \zeta_{\mathbf{k_3}} \rangle \sim f_{\mathrm{NL}} S(k_1, k_2, k_3) P_{\zeta}^2$$

Lots of information;

Focus of this talk

Major target of CMB, LSS, 21cm..

Fantastic New Physics and Where to Find Them

Scattering Amplitudes

Cosmological Correlators $\langle \zeta(x_1)\zeta(x_2)\zeta(x_3)\rangle$

Cosmological Collider Physics

Squeezed limit of the inflationary bispectrum

Arkani-Hamed, Maldacena 2015 Chen, Wang 2009 Baumann, Green 2010 Noumi et al 2012

contains information of heavy particles in the high energy environment of inflation

$$\lim_{k_l \to 0} \langle \zeta_{\mathbf{k_l}} \zeta_{\mathbf{k_s}} \zeta_{\mathbf{k_s}} \rangle \propto \left(\frac{k_l}{k_s}\right)^{3/2} \cos \left[\frac{m}{H} \ln \left(\frac{k_l}{k_s}\right) + \delta\right] P_s(\mathbf{k_l} \cdot \mathbf{k_s})$$

oscillation measures mass, angular dependence measures spin

A Large Menu of Possibilities

EFT of cosmo collider
Standard Model mass spectrum
Non-perturbative regimes
Gauge theories + GUT
Chemical Potential
SM fermions and Higgs
Curved field manifold

Lee, Baumann, Pimentel 2016 Chen, Wang, Xianyu 2016 An, McAneny, Ridgway, Wise 2017 Kumar, Sumdrum 2017; 2018 Wang, Xianyu 2019 Hook, Huang, Racco 2019 DGW 2019

.

This Talk:

Find all Cosmo Collider bispectra via

Cosmological Bootstrap

Cosmological Correlators from Symmetries, Locality & Unitarity

Fully model-independent;

Powerful computational tools.

See H. Goodhew's talk for general introduction

De Sitter Bootstrap

Arkani-Hamed, Baumann, Lee, Pimentel 2018 Baumann, Duaso Pueyo, Joyce, Lee, Pimentel 2019, 2020

Pros

dS symmetries are nicely manifested; Fully analytical control for correlators;

Cons

Non-Gaussianity signals are *very small*; Need 4-pt first, before computing 3-pt.

v.s. Boostless Bootstrap

Pajer 2020 Jazayeri, Pajer, Stefanyszyn 2021 Bonifacio, Pajer, DGW 2021;

Pros

Large signals are possible;

A complete set of single field correlators.

Cons

Only for correlators from massless field interactions

See M.H. G. Lee and A. Thavanesan's talks

De Sitter Bootstrap + Boostless Bootstrap

Boostless Cosmological Collider Bootstrap

Pimentel, **DGW** 2022

- ☐ Large **boost-breaking interactions** with massive particles;
- Bootstrap inflationary three-point functions directly;

A complete menu of possibilities for massive-exchange bispectra.

To be more specific...

Inflaton Bispectrum

$$\langle \phi_{k_1} \phi_{k_2} \phi_{k_3} \rangle$$

All possible $\phi\phi\sigma$ cubic interactions

All possible $\phi\sigma$ quadratic interactions

$$\dot{\phi}^2 \sigma$$
, $(\partial_i \phi)^2 \sigma$, $\ddot{\phi}^2 \sigma$, ...

scalar exchange

$$\dot{\phi}\sigma, \ \partial^2\phi\sigma, \ \ddot{\phi}\sigma, \dots$$

$$\dot{\phi}\partial_{ij..}\dot{\phi}\sigma_{ij..},...$$

spinning exchange

$$\partial_{ij..}\dot{\phi}\sigma_{ij..},...$$

The Building Blocks of BCCB

0. A Mixed Propagator

 $m^2 = 2H^2$

I. Three-Point Scalar Seed $\langle \varphi_{k_1} \varphi_{k_2} \phi_{k_3} \rangle \sim \hat{\mathcal{I}}(u)$

 $u \equiv \frac{k_3}{k_1 + k_2}$

the conversion from massive scalar σ to the inflaton ϕ

10

I. Solving the Scalar Seed

A differential equation for the scalar seed

$$\left(\Delta_u + \frac{m^2}{H^2}\right)\hat{\mathcal{I}} = \frac{u}{1+u}$$

with

$$\Delta_u \equiv u^2 (1 - u^2) \partial_u^2 - 2u^3 \partial_u$$
$$u \equiv \frac{k_3}{k_1 + k_2}$$

Analytical solution:

The squeezed-limit oscillations caused by massive particles

$$\hat{\mathcal{I}}(u \to 0) = -\frac{i}{2} \sum_{\pm} B_{\pm} \left(\frac{u}{2}\right)^{\frac{1}{2} \pm i\mu}$$

$$\propto \sin\left(\frac{M}{H} \log(k_L/k_S)\right)$$

Cosmological Collider Signal

Strategy of BCCB

0. A Mixed Propagator

$$\left(\Delta_u + \frac{m^2}{H^2}\right)\hat{\mathcal{I}}^{(n)} = \left(\frac{u}{1+u}\right)^{n+1}$$

$$\dot{\phi}\sigma = a^{-n_{\partial_i}} \partial_i^{n_{\partial_i}} \left(\partial_t^{n_{\partial_t}} \phi \right) \left(\partial_t^{\tilde{n}_{\partial_t}} \sigma \right)$$

$$\hat{\mathcal{I}}(u) = \hat{\mathcal{I}}^{(n)}$$

(for any number of time and spatial derivatives)

Strategy of BCCB

0. A Mixed Propagator

$$\partial_i^{n_s} \left(\partial_t^{n_1} \phi \partial_t^{n_2} \phi \partial_t^{n_3} \sigma \right)$$

Any boost-breaking cubic interactions

Weight-shifting operators $\langle \phi \phi \phi \rangle = \mathcal{W} \; \langle \varphi \varphi \phi \rangle \sim \mathcal{W} \; \hat{\mathcal{I}}$

$$W_{12} \equiv -c_s^{2-n_s} (\mathbf{k}_a \cdot \mathbf{k}_b)^{n_s/2} k_1^{n_1-1} k_2^{n_2-1} (1 - n_1 - k_1 \partial_{k_1}) (1 - n_2 - k_2 \partial_{k_2}) \partial_{k_{12}}^{\tilde{n}_T - 2}$$

Strategy of BCCB

0. A Mixed Propagator

III. Weight-Shifting

$$\phi \qquad \qquad \varphi \\ m^2 = 0 \qquad \qquad m^2 = 2H^2$$

$$m > 0, s = 0$$
 σ

IV. Spin-Raising

$$\sigma_{\mu_1...\mu_s}$$

$$m > 0, s \ge 0$$

II. Generalized Seeds

Higher-derivative quadratic interactions

Spin-raising operators:

$$\mathcal{D}_{23}^{(s)} \equiv \sum_{m=0}^{s} (ic_s)^{m-s} k_3^{2s-m-1} a_m^{(s)} \mathcal{U}_{k_3}^{(m)} \partial_{k_2}^{2s-m-1}$$

One Formula to Find Them All

A complete set of inflationary bispectra from:

Full shapes

- Large signals
- Richer pheno

Why results from dS bootstrap are small?

mild breaking of dS boost symmetries

$$\langle \zeta_{\mathbf{k_1}} \zeta_{\mathbf{k_2}} \zeta_{\mathbf{k_3}} \rangle$$
 Slow-roll suppressed ~ $O(\epsilon)$

Signals are boosted in strong boost-breaking scenarios

Cubic & quadratic interactions from the EFT of inflation

Baumann, Lee, Pimentel 2016 Bordin, Creminelli, et al 2018 Pimentel, DGW 2022

$$\langle \zeta_{\mathbf{k_1}} \zeta_{\mathbf{k_2}} \zeta_{\mathbf{k_3}} \rangle \sim f_{\mathrm{NL}} S(k_1, k_2, k_3) P_{\zeta}^2$$
 size shape $f_{\mathrm{NL}} \lesssim \mathcal{O}(10)$

Phase of Cosmological Colliders

Oscillatory signals in the squeezed limit of the shape function

$$\lim_{k_3\to 0} S^{(0)}(k_1,k_2,k_3) \sim \left(\frac{k_3}{k_1}\right)^{1/2} \cos\left[\mu\log\left(\frac{c_\sigma k_3}{4c_s k_1}\right) + \delta(\mu)\right]$$
 two sound speeds \bullet

For dS-invariant theories:

$$c_s = c_\sigma = 1$$
.

$$\delta^{
m dS}(\mu) =
m arg \left[i rac{\Gamma\left(rac{7}{2} + i \mu
ight)}{\Gamma\left(1 + i \mu
ight)} rac{(1 + i \sinh \pi \mu)}{rac{1}{2} + i \mu}
ight]$$

Collider Signals around the Equilateral Limit

One special case:

$$c_{\sigma} \ll c_{s}$$

Collider signals are shifted outside of the squeezed limit.

The Equilateral Collider Shape

$$S^{\text{eq.col.}}(k_1, k_2, k_3) = \frac{k_1 k_2}{(k_1 + k_2)^2} \left(\frac{k_3}{k_1 + k_2}\right)^{1/2} \cos\left[\mu \log\left(\frac{c_{\sigma} k_3}{2c_s(k_1 + k_2)}\right) + \delta\right] + \text{perms.}$$

Take-Away Messages

- A complete set of cosmo collider bispectra, Bootstrapped!!
- The size of the bispectra can be large, as strong breaking of the dS boosts is allowed in BCCB.
- Mew pheno with the phase of cosmo colliders and the equilateral collider shape
- These bispectra shapes provide theoretically well-motivated (and consistent) targets for upcoming LSS/CMB/21cm surveys.

New formalism. A lot to be done!

Looking forward to questions in the discussion session.