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Machine learning to improve scaling relations 
in cluster cosmology



Mass estimation of galaxy clusters 
is important for cosmology

Clusters: A “Dark” Past

First evidence for dark matter:
Zwicky (1933) observations of Coma cluster 
galaxies
(also light from dark matter? – Thursday)

Measurement of Ωm ~ 0.3:
e.g. White et al. 1993 and many others

Jeltema et al. 2001
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scatter must be a valid non-degenerate covariance matrix that
prevents combinations of extreme correlation coefficients.

4.1.5. Constraints on X-Ray Scaling Relation Parameters

Without any informative priors on the X-ray scaling relation
parameters, we can use the SPTcl data set to constrain the YX–
mass relation. The recovered amplitude

A 6.35 0.69 26YX = ( )
is very close to the WL-informed prior (Applegate et al. 2014; von
der Linden et al. 2014; Hoekstra et al. 2015; Mantz et al. 2015)

that was used in our previous cosmology analysis (AYX=
6.38±0.61; dH16). We constrain the redshift evolution of the
YX–mass relation to

C 0.31 . 27Y 0.21
0.14

X = - -
+ ( )

The self-similar expectation CYX=−0.4 is well within 1σ. Our
measurement of the YX scatter

0.18 0.09 28Yln Xs = ( )
is higher than but consistent at the 1σlevel with the prior
0.12±0.08 adopted in previous SPT analyses. It closely

Figure 4. Distribution of clusters as a function of redshift (left panels) and detection significance ξ (right panels). The top panels show the SPT-SZ data and the
recovered model predictions for νΛCDM. The bottom panels show the residuals of the data with respect to the model prediction. The different lines and shadings
correspond to the mean recovered model and the 1σand 2σallowed ranges. The dotted lines show the Poisson error on the mean model prediction. There are no clear
outliers, and we conclude that the model provides an adequate fit to the data.

Figure 5. Constraints on mW and 8s from this analysis and from a previous
analysis that used the same cluster sample (dH16). The consistency (0.2σ)
indicates that our internal mass calibration using WL data agrees with the
external X-ray mass calibration priors adopted in dH16.

Figure 6. νΛCDM constraints on mW and 8s . The SPTcl data set comprises
SPT-SZ+WL+YX, Planck is TT+lowTEB, and KiDS+GAMA and DES Y1
are cosmic shear+galaxy clustering+galaxy–galaxy lensing. The WtG (X-ray-
selected clusters) result also contains their fgas measurement.
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Figure 12: The sensitivity of the cluster mass function to cosmological models.
(Left) The cumulative mass function at z = 0 for M > 5× 1014h−1M" for three
cosmologies, as a function of σ8, with shape parameter Γ = 0.2; solid line: Ωm =
1; short–dashed line: Ωm = 0.3, ΩΛ = 0.7; long–dashed line: Ωm = 0.3, ΩΛ = 0.
The shaded area indicates the observational uncertainty in the determination
of the local cluster space density. (Right Evolution of n(> M, z) for the same
cosmologies and the same mass–limit, with σ8 = 0.5 for the Ωm = 1 case and
σ8 = 0.8 for the low–density models.
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Figure 13: (Left) The cumulative X-ray temperature function for the nearby
cluster sample by Henry & Arnaud (1991) and for a sample of moderately distant
clusters (from Henry 2000). (Right) Probability contours in the σ8–Ωm plane from
the evolution of the X-ray temperature function (adapted from Eke et al. 1998).
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Traditional approaches for cluster mass estimation
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factor of 2. Here, we evaluate SDM performance in the context of
our catalog to serve as a baseline with which to compare our ML
model.

Replicating our treatment of CNN models, we train SDMs
on two types of cluster descriptions, the member {vlos}
distribution and the joint member {Rproj, vlos} distribution.
We will appropriately refer to these as SDM1D and SDM2D,
respectively. Each individual input to the SDM is a list of
univariate or bivariate galaxy properties (velocities and/or
radial positions). The length of each input list is variable and
equal to the cluster richness. In this application of SDMs, we
assume this list of galaxies is representative of some underlying
probability distribution which varies with cluster mass.

Our implementation of SDM mirrors that of Ntampaka et al.
(2016). The kernel function employed in our SDM model is a
Kullback–Leibler divergence, estimated using the k-nearest-
neighbor method (Wang et al. 2009) with k=3. We use
three-fold cross-validation to find optimal values for SDM
parameters C and σ, the loss function parameter and Gaussian
kernel parameter, respectively. We evaluate the SDM models
with ten-fold cross-validation, and the training and test sets
described in Section 2.3.

Analysis of each SDM model was run on two Intel Haswell
(E5-2695 v3) CPU nodes with 14 cores each and 128 GB of
total RAM. Using the mock catalog described in Section 2, the
full 10-fold transductive training and evaluation procedure
executed in ∼6 hr for each SDM model.

5. Results

The results presented in this section analyze the performance
of our CNN models when evaluated on a catalog of mock
cluster observations (Section 2). Model performance is
quantified in terms of predictive scatter, bias, lognormality,
robustness, and application time. We describe these metrics in
the context of observational studies and discuss their implica-
tions in precision cosmology. Using these metrics, we perform
comparative analyses with respect to the dynamical mass
estimators described in Section 4. The complete list of
investigated models presented in this section is summarized in
Table 2. We find that the CNN models produce more accurate
and robust mass estimates than all other investigated methods,
with considerably shorter implementation times than SDM.

5.1. Predictive Performance

Figure 7 shows the multifold predicted-versus-true mass
distribution of the CNN1D and CNN2D models when perform-
ing inference on the test data set (Section 2.3). For each model,
we describe the distribution of mass predictions via the
logarithmic residual ò, defined as

( )
⎡
⎣⎢

⎤
⎦⎥=�

M

M
log 810

pred

true

for a cluster of mass Mtrue whose predicted mass is Mpred. This
metric is commonly employed in other observational studies
(e.g., Armitage et al. 2019a, 2019b; Calderon & Berlind 2019)
and conveniently scales linearly with our model output y
(Equation (4)). The mass definition used in this analysis is
Mtrue=M200c. We further characterize model predictions by
calculating cumulative statistics of the ò distribution, namely
the median (�̃ ), 16th–84th percentile range (Δò), and the
standard deviation scatter (σò). The values of these statistics for
CNN1D and CNN2D are tabulated in Table 2. Note that these
cumulative statistics are constructed from the test catalog and
marginalized over true mass and are thereby weighted by the
shape of the test catalog cluster mass function (Figure 2).

Figure 6. M–σ relationship for (a) pure and (b) contaminated mock observation cluster catalogs derived from MDPL2 data. Each distribution is plotted at its median
(solid line), 16th–84th percentile range (dark region), and 3rd–97th percentile range (light region). The log-linear regression lines are shown along with their ±1σ
lognormal scatter. The dotted black line at M200c=1014.5 h−1 Me signifies the lower-bound mass cut used to perform the log-linear regression. Selection effects in the
contaminated catalog introduce significant scatter and bias at low masses.

Table 1
Best-fit Parameters for Log-linear Regression of M–σ in the Pure and

Contaminated Catalogs

Catalog ( )s -km sv,15
1 α Scatter (dex)

Pure 1078 0.345 0.056
Contaminated 971 0.254 0.059

Note. Parameters are defined in the formalization of the M–σ given in
Equation (5). The lognormal scatter is defined as the standard deviation of
prediction residuals for clusters above the mass cut, M200c�1014.5 h−1 Me.
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(   , other observables?? )Y3/5
CMB= f

• X-ray/CMB surveys 

- Gas density/pressure profile
- Luminosity profile
- Spectral temperature
- Gas concentration/ellipticity
- …… 

• Galaxy surveys 

- Richness
- Galaxy colors 

(e.g. fraction of red galaxies)
- Stellar mass
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Symbolic 
regression

Decision-tree
approaches 

(e.g., random forests)

ML tools could be of help
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cgas ≡
Mgas(r < R200c/2)
Mgas(r < R200c)

Second step: Symbolic regression

M(1)
pred ∝ Y3/5

M(2)
pred ∝ Y3/5 (1 − A cgas)
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cgas ≡
Mgas(r < R200c/2)
Mgas(r < R200c)

1. Central regions of clusters are noisier 
(conc. can be used to down-weight central regions) 

2. Conversion of gas to stars reduces Y

Reasons for dependence:

M(1)
pred ∝ Y3/5

M(2)
pred ∝ Y3/5 (1 − A cgas)

Kravtsov et al. 06, 
Arnaud et al. 10
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But IllustrisTNG has only one configuration 
of baryonic feedback and initial conditions?

Do the results hold in a more general setting?
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But IllustrisTNG has only one configuration 
of baryonic feedback and initial conditions?

Do the results hold in a more general setting?

CAMELS simulations
(Villaescusa-Navarro et al. 21)
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Reducing deviation from self-similarity (pow. law)

Due to ejection of gas from clusters/groups 
 due to AGN/SN feedback

Y ∝ M5/3

(virial theorem)

Part II : 
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Y (1 +
M*(r < R)

Mgas(r < R) )

Y

Y [1 +
M*(r < R/2)

Mgas(r < R/2) ]

Results

Virial 
theorem

DW et al. in prep
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Can we use the Y-M measurements to constrain 
baryonic feedback?

Part III : 

(SN wind speed)

(AGN jet speed)
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given that the PTE found in our fiducial analysis is not very
low, we do not pursue these possibilities further and leave
them to a future study.

In Fig. 5 we show the constraints on the pressure profile
parameters of the break model. The full constraints for this
model at both Planck and DES-Y1 cosmologies on all the
parameters (other than shear calibration and photo-z shift pa-
rameters, as they are prior dominated) are shown in Fig. 13
in Appendix B. We find the constraints from analyzing the
Planck-only and ACT correlations to be consistent. The cor-
relations with the Planck-only map have a higher total signal
to noise owing to the larger area. Note, though, from Fig. 1
that the smaller beam size of ACT equates to higher sensitiv-
ity to low mass and high-redshift halos.

Our results exhibit a strong degeneracy between P0 and
�, making the marginalized posterior on P0 very weak and
the marginalized posterior on � somewhat sensitive to our P0
prior. The redshift evolution parameter, ↵z, and the power-law
index below the break mass, ↵break

m , are weakly constrained
when using both the ACT and Planck maps. The dashed line
in Fig. 5 indicates the parameter values corresponding to the
[38] model.

2. Inferred redshift and mass dependence of the pressure profiles
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OWLS AGN

OWLS REF

Break Model; Inferred

Figure 6. Inferred 68% credible interval (blue shaded region) on the
Ỹ500 � M500 relation at z = 0.25 using the break model. We compare
predictions from various hydrodynamical simulations (curves). We
find our inferences to be consistent with all the hydrodynamical sim-
ulations at high mass, but we find a departure for lower mass halos
where AGN feedback has its greater impact.

We can translate the model posterior from our fits to the
shear-y correlation into constraints on the relation between
the integrated halo y signal and halo mass. In Fig. 6 we show
the Ỹ500 � M500 relationship inferred from the break model
fits, where Ỹ500 is given by:

Ỹ500(M, z) =
D2

A(z)
(500Mpc)2E2/3(z)

�T

mec2

Z R500c

0
dr4⇡r2 Pe(r|M, z)

D2
A(z)

,

(37)

Figure 7. Inferred 68% credible interval (blue shaded region) on the
bias weighted pressure of the universe (hbPei) from our pressure pro-
file constraints, assuming the break model. We compare this infer-
ence to previous studies where constraints are obtained from cross-
correlations between galaxy/halo catalogs with Compton-y maps.

Figure 8. Inferred 68% credible interval (blue shaded region) on the
auto-power spectra of Compton-y when adopting the break model.
We compare this inference with measurements from the Planck,
ACT and SPT Collaborations, finding a good agreement across all
scales. Our measurement is also consistent with expectations from
the model of Battaglia et al. [38] (green curve).

where E(z) is the dimensionless Hubble parameter. In or-
der to obtain the blue-shaded band in Fig. 6, we estimate the
Ỹ500 � M500 relationship for 2000 samples from the posterior
of the break model and estimate the 68% credible interval
from the resulting curves.

We compare the inferred Ỹ500�M500 relationship from data
to the predictions from various hydro-dynamical simulations
incorporating di↵erent feedback mechanisms. The OWLS
REF and OWLS AGN curves correspond to the cosmo-
OverWhelmingly Large Simulation (cosmo-OWLS) simula-
tions [71, 72]. OWLS REF includes the prescriptions for ra-
diative cooling and supernovae feedback while OWLS AGN

Pandey et al. 21 
(ACT x DES)

Y ∝ M5/3

Le Brun et al. 15
Hill et al. 18
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Constraints on sub-grid models

DW et al. in prep
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Summary

★  ML tools like symbolic regression can 
be used to improve astrophysical scaling 
relations °0.6
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- Using gas conc. reduces scatter in SZ mass 
estimates by 20-30% for large clusters 

- Including stellar to gas mass ratio reduces 
deviation from self-similarity by factor >2

➡  Suggestions for other scaling relations?

mailto:jayw@ias.edu
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(Halo mass,  secondary props. )= f
{env., conc, shear,….}

Mv = A(log10P − 1) − B
- Cepheid P-L relation (useful for measuring )H0

- Philips relation for supernovae

Mmax(B) = − 21.726 + 2.698 Δm15(B)

Ngal MHIor MHI

MHOD
= 0.81 + 1.44 α′ 0.5 m10

−0.57 (α′ 2
0.5 m2

10 + α′ 0.5 δ′ 5)

- Tully fisher relation
- Black hole-bulge mass relation
- Fundamental plane relation
- ….

Delgado/DW et al. 21

Application to other scaling relations?


