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Cosmic strings are long, thin objects formed by symmetry
breaking in the early universe

• The symmetry-breaking / phase-transition scale, η . 1014 GeV, sets
the string thickness (∝ 1/η) and mass per unit length (∝ η2).

• At η, a network of strings forms; from this point on, the network
continuously produces a population of string loops.
• The loops oscillate, as strings have tension, and so produce

gravitational waves (GWs).

• Locally: self-interactions with these GWs, backreaction, changes the
loop’s shape.

• Far away: a large population of loops, filling the universe, emitting
GWs over a long period of time, leads to a stochastic gravitational
wave background (SGWB).
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Two big questions:

1) How does backreaction change the shape of a string loop?

2) How do those changes affect the loop’s evolution and GW emission?
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Our computational procedure

• We perform a symmetry-breaking simulation, evolve the resulting
network, and extract loops as they form.

• We only extract loops after they have reached a non-self-intersecting
trajectory. (When a loop self-intersects, it splits in two.)

• For each loop extracted, we evolve it under backreaction until it
reaches 50% evaporation, meaning that half of the loop’s initial
energy has been lost to GWs.

• The statistical properties of this corpus (we look at O(100) loops) are
what we’re interested in!
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Sample loop, 0% evaporated
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Sample loop, 50% evaporated
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Loops form jagged, but backreaction smooths them out

• Loops fresh from the network have lots of small-scale structure due to
kinks, which backreaction smooths out.

• Previous work used a toy model of backreaction, which also smoothed
kinks, but more quickly and on larger scales (c.f. 1508.02693).
Prediction: final spectrum will be kinkier in comparison.

• The rate and scale of smoothing observed in simulation agrees with
analytical predictions (see 1808.08254, 1903.06079)
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The typical loop’s power spectrum let us predict a SGWB

• Because string loops are closed, they emit GWs at discrete modes.

• When predicting SGWBs from string loops, three approaches are
common:

• Don’t account for backreaction; assume a pure power spectrum,
Pn ∝ n−4/3 (called cuspy).

• Don’t account for backreaction; assume a pure power spectrum,
Pn ∝ n−5/3 (called kinky).

• Use the toy model of backreaction to smooth loops from simulation
and find an average power spectrum; looks cuspy at n ≫ 1 with some
variation at low modes (called BOS; see 1709.02693).
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Backreaction reduces the power in high-frequency modes
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Caveat: this plot is for loops without major self-intersections anywhere in
their evolution!
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Backreaction can lead to self-intersections, but the effect
seems small

• Initially non-self-intersecting loops may be moved to self-intersecting
trajectories by backreaction. However, such self-intersections are. . .

• . . . infrequent: median of 2 self-intersections per loop evolved. (The
modal loop has no self-intersections at all.)

• . . . minor in scale: median total length lost to intersections is . 1%.

• Remains to be seen how much self-intersections can influence the
spectrum, and thus the SGWB.

• Example: if self-intersections are more common than in the toy model,
we’d expect a kinkier final spectrum.
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Different Pn affect the SGWB only slightly
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At ∼nHz frequencies, kinkier spectra are more detectable
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At ∼mHz frequencies, cuspier spectra are more detectable
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• Backreaction takes initially kinky loops and makes them smooth(er),
but probably not as smooth as existing toy models.
• Backreaction can lead to self-intersections, but we currently think the

spectrum is only minorly affected by them.
• The stochastic gravitational wave background from backreacted string

loops should be very close to current models, but with measurable
differences in regions covered by current and future detectors.

Look for more results and more details Soon™!
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