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• Introduction on Gravitational lensing

• Lensing signals: methods and lens models

• Forecasts for gravitational wave (GW) detectors

• Applications to Dark Matter (DM) models

• Conclusions and outlooks
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Gravitational lensing

Lensing of EM waves
• Established probe at very
different scales

• Powerful insights on matter
distribution

Lensing of GWs can soon become
reality
• Coherence and low frequencies:
probe of diffraction regime

• Sensitivity to 1/r instead of 1/r2

• No absorption: probe of dense
DM regions
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Lensing of GWs

• gµν = gFRW
µν + hµν , □hµν = 0

• Amplification factor: F (f)

F (w) = hL(f)/h0(f)

=
w

2πi

∫
d2x eiwϕ(x,y)

DLS

DS

y

x

Lens

Observer

Source

DL

[Schneider, Gravitational Lenses ’92]

• x, y dimensionless distances in units of the Einstein’s radius

• Fermat potential: ϕ(x,y) ∝ time delay

ϕ(x,y) =
1

2
|x− y|2 − ψ(x)

• Lensing potential: ψ(x), sourced by the projected mass distribution

• Dimensionless frequency: w ≡ 8πGMLzf ≃ MLz
107 M⊙

· f
mHz

,
MLz ≡ redshifted lens mass
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Computing F (w)

F (w) =
w

2πi

∫
d2x eiwϕ(x,y)

w ≡ 8πGMLzf ≃
MLz

107 M⊙
·

f

mHz
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• w ≪ 1: wave does not feel the lens F (w) ≃ 1

• Geometric optics (GO) w ≫ 1: stationary-phase approx. (lens eq.)

∇xϕ(x,y) = x− y −∇xψ(x) = 0

solutions: images J with magnification µJ , time delay ϕJ and Morse
phase nJ = 0, 1/2, 1

F (w) ≃
∑
J

|µJ |1/2eiwϕJ−iπnJ

• Wave optics (WO) w ∼ 1: no analytic expansion for F (w).
Carries more info about the lens: opportunity for GW lensing
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Computing F (w): contour method

• Standard numerical integration is troublesome: highly oscillatory
integral

• We implemented a “contour method”: [A. Ulmer, J. Goodman, ’94]

evaluate the time-domain signal I(τ), then use inverse Fourier
transform

I(τ) =
∫

dw e−iwτ F (w)

(−iw) =

∫
dw

2π

∫
d2x eiw(ϕ(x,y)−τ)

=

∫
d2x δ (ϕ(x,y)− τ) =

∑
k

∮
γk

ds

|∇ϕ(x(τ, s),y)|

• Reduced to a 1D integral over contours γk of constant ϕ(x,y) = τ .
The sum

∑
k is over stationary points (images), where the contours end.
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Computing F (w): contour method
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Lens models

• For simplicity, we focus on axially-symmetric lenses ψ(x) = ψ(x) that
model DM halos

• DM halos roughly described by the Singular Isothermal Sphere (SIS)

ρ =
σ2
v

2πGr2
, ψ(x) = x

In GO gives two images (minimum and saddle)

• We study deformations from the SIS, motivated by DM models

• The presence of a core modelled by the Cored Isothermal Sphere (CIS)

ρ = ρ0
r2c

r2 + r2c
, ψ(x) =

√
x2 + x2c + xc log

(
2xc

xc +
√
x2 + x2c

)
• One additional central image (maximum) with finite magnification

• Specific DM models (e.g. Fuzzy DM) predict cores [L. Hiu+, ’16]
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Lensing of GW: results and forecasts

• Lensing features are investigated
in current detectors

[L.Dai+, ’20; LIGO, Virgo, ’21]

• Previous analyses mostly focused
on singular lenses
[R. Takahashi+ ’03; P. Cremonese+, ’21; H. G. Choi+, ’21; ...]
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• We focus on distinguishing between different lens features:
cored vs. singular DM distribution
Evaluate sensitivities on lens parameters (core size xc for LISA)
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Lensing of GW: results and forecasts

• We perform a Fisher matrix
forecast on source and lens
parameters for LISA

[M. Vallisneri, ’07]

θi = {DL, ϕ0, MLz , y, xc}
Fij ≡ (∂ihL|∂jhL), ∂i ≡ ∂/∂θi

σ2
i = (F−1)ii, marginalized posteriors

• GW sources with equal mass, non
spinning and fixed orientation,
using PhenomD waveforms

[S. Husa+, ’15, S. Khan, ’15]

• Focus on strong-lensing regime
(multiple images)

• Fiducial lens parameters:
MLz = 107 M⊙ , y = 0.3, xc = 10−2

10−5 10−4 10−3 10−2 10−1 100

f [Hz]

10−21

10−20

10−19

10−18

10−17

10−16

C
h

ar
ac

te
ri

st
ic

st
ra

in

MBBH [M�]

108

107

106

105

104

10−2 10−1 100 101 102 103
w (MLz = 107M�)

102 104 106 108 1010

MLz [M�]

102

103

le
n

se
d

S
N

R

MBBH [M�]

108

107

106

105

104

10



Results and forecasts: dependence on source mass
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• HighMLz dominated by GO regime (results saturate). LowMLz gives no
lensing (lens parameters cannot be reconstructed)

• SNR is peaked at the Innermost Stable Circular Orbit (ISCO), with
fISCO ∼ 1/MBBH

• Lighter BBH give better constraints at smallMLz : easier to have larger
w at ISCO
wISCO ∼MLz/MBBH

11



Results and forecasts: dependence on y
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Larger y improves the constraints

• MLz is probed in GO through the time delays, that increase for large y

• xc: magnification of the third image increases with y
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Application: Ultra-light DM

• Forecast results on lens
parameters have implications for
constraints on DM models

• Models of Ultra-light DM predict
cores with a minimum size and
mass

r1/2 ≥ 0.33 kpc
109M⊙

ML

(
10−22eV

mϕ

)2

ML ≳ 1.4 · 107 M⊙

(
10−22eV

mϕ

)
[L. Hiu+, ’16]

• A non detection of core features
or of smallMLz would imply
bounds on DM mass, assuming
halos can be described by the CIS
lens
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Conclusions and outlooks

• GW lensing is a very promising tool for DM characterization

• We implemented fast, accurate and flexible methods to evaluate
lensing signals in the WO regime

• Lensed LISA ans LIGO events could test DM-halos features, such as the
presence of cores

Future directions

• Investigation of the weak-lensing regime (single image): WO effects give
more information about the lens model

• Include more GW parameters (e.g. LIGO/LISA antenna pattern, spins
ecc..) to provide more robust lensing forecasts

• Study of more complicated lens models and configurations
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Lens models: Cored Isothermal Sphere

• Central image has a finite
minimum magnification
µH > µ0 = 4x2c/ (1− 2xc)

2

• Time delays between images can
be of order of days
∆T ≃ (1 day)

(
Mv/1011M⊙

)4/3
∆ϕ

• Potential for GW observations:
for xc ̸= 0 an additional GW
signal can be detected
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Results and forecasts: correlations

• For highMLz , precision on lens
parameters saturates

• In this limit, we are sensitive to
linear combinations of the
parameters: their accuracy
increases and the parameters
become almost degenerate

• Precision could drastically
improve if some parameters are
independently measured (e.g. EM
counterparts)
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