Neutrino Self-Interactions, Hubble tension, and Inflation

Shouvik Roy Choudhury
Institute Postdoctoral Fellow
Department of Physics
Indian Institute of Technology Bombay (IITB)

Collaborators: Steen Hannestad and Thomas Tram,
 Aarhus University, Denmark

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ める○

This Talk is based on ...

- Shouvik Roy Choudhury, Steen Hannestad, Thomas Tram, "Updated constraints on massive neutrino self-interactions from cosmology in light of the H₀ tension," arXiv: 2012.07519 (JCAP 03 (2021) 084).
- Shouvik Roy Choudhury, Steen Hannestad, Thomas Tram, "Massive neutrino self-interactions and Inflation," arXiv: In preperation.

Part 1

• Part 1: Related to Hubble Tension.

Introducing Neutrinos

• Active neutrinos have three mass eigenstates (ν_1 , ν_2 , and ν_3) which are quantum superpositions of the 3 flavour eigenstates (ν_e , ν_μ , and ν_τ). The sum of the mass of the neutrino mass eigenstates, is the quantity,

$$\sum m_{\nu} \equiv m_1 + m_2 + m_3,\tag{1}$$

where m_i is the mass of the i^{th} neutrino mass eigenstate.

- Tightest bounds on $\sum m_{\nu}$ come from cosmology.
- We use the approximation, $m_i = \sum m_{\nu}/3$ for all i.
- The radiation density in the early universe can be written as,

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma \tag{2}$$

 $N_{\rm eff}$ is the effective number of relativistic degrees of freedom.

Neutrino Self-interactions mediated by a heavy scalar

- In this paper we have updated the constraints from cosmology on flavour universal neutrino self-interactions mediated by a heavy scalar ($m_{\phi} \geq 1$ keV), in the effective 4-fermion interaction limit (CMB temperature is far lower than the keV range).
- ullet Simplified universal interaction: ${\cal L}_{
 m int} \sim g_{ij} ar
 u_i
 u_j \phi,$ with $g_{ij} = g \delta_{ij}$.
- The effective self-coupling, $G_{\text{eff}} = g^2/m_{\phi}^2$, with $G_{\text{eff}} > G_F$ (Fermi constant), so that they remain interacting with each other even after decoupling from the photons at $T \sim 1$ MeV.
- The self-interaction rate per particle $\Gamma = n \langle \sigma v \rangle \sim G_{\text{eff}}^2 T_{\nu}^5$, where $n \propto T_{\nu}^3$ is the number density of neutrinos. Neutrinos don't free-stream until $\Gamma < H$.
- Introducing this kind of interaction had shown potential in solving the Hubble tension in previous works in the very strong interaction range $(G_{\rm eff} \sim 10^9 G_F)$ using older data.

The Cosmological Model of interest

- ullet Cosmological model: $\Lambda ext{CDM} + \log_{10} \left[ext{G}_{ ext{eff}} ext{MeV}^2
 ight] + ext{N}_{ ext{eff}} + \sum m_{
 u}$.
- Kreisch et. al., Phys. Rev. D 101, 123505 (2020) found the 68% bounds: $\log_{10} \left[G_{\text{eff}} \text{MeV}^2 \right] = -1.41^{+0.20}_{-0.066}$ (strong self-interactions), $H_0 = 71.1 \pm 2.2 \text{ km/s/Mpc}$, $N_{\text{eff}} = 3.80 \pm 0.45$, $\sum m_{\nu} = 0.39^{+0.16}_{-0.20} \text{ eV}$ with Planck 2015 low-l and high-l TT+lensing combined with BAO, with similar goodness of fit to the data as Λ CDM.
- In this model, N_{eff} and H_0 are positively correlated \rightarrow Solution to the Hubble tension came from high $N_{\text{eff}} \simeq 4$ values.
- Planck polarization data was not used for main conclusions.

The Cosmological Model of interest

- With the public release of the Planck 2018 likelihoods, we thought it is timely to test the model again.
- We made runs which incorporated the full prior range of $\log_{10} \left[G_{\text{eff}} \text{MeV}^2 \right]$, i.e. $-5.5 \rightarrow -0.1$.
- We also run the non-interacting case $(NI\nu:G_{eff=0})$, the moderately interacting case $MI\nu$ $(log_{10} [G_{eff}MeV^2] \lesssim -2)$, and the strongly interacting case $(SI\nu)$ $(log_{10} [G_{eff}MeV^2] \gtrsim -2)$ separately.

Plots from runs with full prior range of $log_{10}[G_{eff}MeV^2]$

Main conclusions follow from the TTTEEE+lowE+EXT dataset (blue curve).

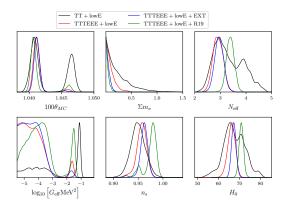


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084)

Mode separation: $MI\nu$ and $SI\nu$ plots shown separately

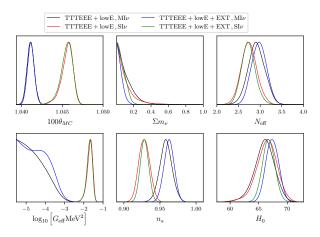


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084)

Mode separation: $MI\nu$ and $SI\nu$ plots shown separately

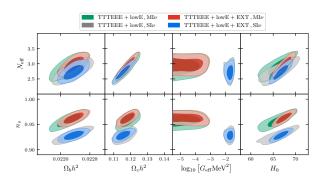


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084)

Discussion

- $\log_{10} \left[G_{\text{eff}} \text{MeV}^2 \right]$ is degenerate with θ_{MC} and n_s . This allows for a bimodal posterior distribution, even with the latest full Planck data.
- With TTTEEE+lowE+EXT we found the following 95% bounds, for the $SI\nu$

$$H_0 = 66.7^{+2.2}_{-2.1} \ \mathrm{km/s/Mpc}$$

 $N_{\mathrm{eff}} = 2.73^{+0.34}_{-0.31}$
 $\sum m_{
u} < 0.15 \ \mathrm{eV}.$

- Even if one were to re-analyze the data with a fixed $N_{\rm eff} = 3.044$ with massive neutrinos and strong interactions, one would very likely get H_0 values in the ballpark of 69 70 km/s/Mpc (as can be seen from the plots above), which does not work as a solution to the Hubble tension, albeit reducing the tension slightly compared to vanilla $\Lambda {\rm CDM}$.
- For the Non-interacting case (NI ν : Λ CDM + N_{eff} + \sum m $_{\nu}$), we find $H_0 = 67.3 \pm 2.2$ km/s/Mpc (95%) \rightarrow The strongly interacting model doesn't work better than this simple extension to Λ CDM.

EXT \equiv Planck 2018 lensing + BAO + RSD + SNeIa

Discussion

- Furthermore, Neutrino self-interactions are also strongly constrained from particle physics experiments, with the exception of flavour specific interaction among the τ -neutrinos.
- We find, $-2 \left[\log \left(\mathcal{L}_{\mathrm{SI}\nu} / \mathcal{L}_{\mathrm{NI}\nu} \right) \right] = 3.4 \text{ (approx. } \Delta \chi^2)$, and $Z_{\mathrm{SI}\nu} / Z_{\mathrm{NI}\nu} = 0.06 \text{ (evidence ratio)}$, with TTTEEE+lowE+EXT.
- Bayesian evidences and log likelihood values both disfavour very strong self-interactions compared to $\Lambda \text{CDM} + N_{\text{eff}} + \sum m_{\nu}$, i.e. the non-interacting scenario $NI\nu$.
- To conclude, with current data, the strong neutrino self-interaction model does not look like a promising solution to the current H_0 discrepancy.

Part 2

• Part 2: Related to Inflationary models.

Inflationary Models

- The primordial scalar and tensor power spectra are usually parameterized as: $\mathcal{P}_s = A_s (k/k_*)^{n_s-1}$ and $\mathcal{P}_t = A_t (k/k_*)^{n_t}$, respectively, with the tensor-to-scalar ratio $r \equiv A_t/A_s$. Pviot scale : k_* .
- A general slow roll single field inflationary model Lagrangian:

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi), \tag{3}$$

- Slow roll parameters: $\epsilon(\phi) \equiv \frac{m_{\rm pl}^2}{16\pi} \left(\frac{V^{'}}{V}\right)^2; \qquad \eta(\phi) \equiv \frac{m_{\rm pl}^2}{8\pi} \left(\frac{V^{''}}{V}\right).$
- Cosmological observables: $n_s = 1 6\epsilon(\phi_s) + 2\eta(\phi_s); \quad r = 16\epsilon(\phi_s).$
- Inflation ends when $\epsilon(\phi_e) = 1$.
- Number of e-folds: $N_* \simeq -\frac{8\pi}{m_{\rm pl}^2} \int_{\phi_s}^{\phi_e} \frac{V}{V'} d\phi$.
- $N_* \simeq 40-60$ for observable fluctuations in CMB.
- So given a potential $V(\phi)$, and a choice of N_* , one can predict the scalar spectral index n_s , and tensor to scalar ratio r.

40.40.41.41.1.2.000

Inflationary Models of Concern

- We are interested in Natural inflation (NI) and Coleman-Weinberg Inflation (CWI).
- $ullet V_{
 m NI}(\phi) = \lambda^4 \left(1 + \cos\left(rac{\phi}{g}
 ight)
 ight)$
- $ullet \ V_{
 m CWI}(\phi) = A\phi^4 \left[\ln \left(rac{\phi}{f}
 ight) rac{1}{4}
 ight] + rac{Af^4}{4}.$
- Both models are ruled out by current cosmological data at more than 2σ in the minimal Λ CDM + \mathbf{r} model.

Disfavoured by Cosmological Data

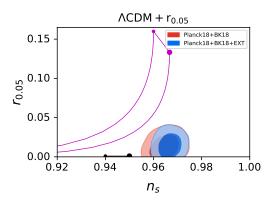


Figure: Natural Inflation (Magenta). CW Inflation (Black). $50 < N_* < 60$. Planck18=TT,TE,EE+lowE. BK18=BICEP/Keck CMB B-mode data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa.

Roy Choudhury et al, arXiv: In preparation.

Disfavoured by Cosmological Data

• They are disfavoured at 2σ even in the NIv $\equiv \Lambda CDM + r_{0.05} + N_{eff} + \sum m_{\nu}$ model, with the most constraining dataset combination.

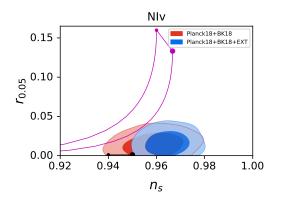


Figure: Natural Inflation (Magenta). CW Inflation (Black). 50 < N_{*} < 60.

Planck18=TT,TE,EE+lowE. BK18=BICEP/Keck CMB B-mode data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa.

Effect of Neutrino self-interactions: allowed at 2σ

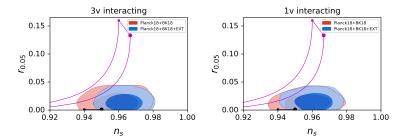


Figure: Natural Inflation (Magenta). CW Inflation (Black). $50 < N_* < 60$. Planck18=TT,TE,EE+lowE. BK18=BICEP/Keck CMB B-mode data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa.

Roy Choudhury et al, arXiv: In preparation.

Discussion

- Strong neutrino self-interactions induce changes in the CMB spectra that lead to lower n_s values.
- In this analysis, we include the neutrino interaction in both scalar and tensor perturbation equations,
- We consider two scenarios: 1. all 3 neutrinos interacting, 2. only one neutrino interacting.
- We find that for the full range runs of $\log_{10} [G_{\text{eff}} \text{MeV}^2]$, both NI and CWI are allowed at 2σ , though not at 1σ .

THE END

THANK YOU