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Motivations: QCD Axion

d Peccei-Quinn solution -|
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Motivations: QCD Axion

d Peccei-Quinn solution
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Vafa-Witten theorem + dynamical
relaxation

0 — 0(x) = a(z)/ fa
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Motivations: QCD Axion
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Vafa-Witten theorem + dynamical
relaxation

d Peccei-Quinn solution
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> Assume an abelian global symmetry,
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spontaneous breaking at large temperature fa - d ener &t
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Motivations: QCD Axion_

IS O I N M NSRS Sy PG Ay PG Ay Bl e e

Vafa-Witten theorem + dynamical

d Peccei-Quinn solution
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> Assume an abelian global symmetry,
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> Axion appears as Goldstone boson, but
symmetry is anomalous. Axion potential is —— Aqcp Lution

0
generated at QCD era due to explicit breaking W
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Motivations: QCD Axion_

B

d Peccei-Quinn solution
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Vafa-Witten theorem + dynamical
relaxation

0 — 0(z) = a(z)/fa
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> Assume an abelian global symmetry,

. 1on
spontaneous breaking at large temperature fa - d ener &t
Lo
AXW

> Axion appears as Goldstone boson, but

symmetry is anomalous. Axion potential is —+ Aqcp colutiot
generated at QCD era due to explicit breaking W
> Oscillations around potential behave as NR date

condensate




Motivations: QCD Axion

Inflation?
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Time

PQ
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QCD

scenario
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Time
Inflation
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Single 6; value " Multiple 6;values
_____________________________________ QD N e e,
Axion
mass
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0 (1012 GeV) !

Relic density just depends on single
initial misalignment angle

Distribution of initial misalignment angles
— distribution highly inhomogeneous
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Pre vs.Post-Inflation scenario

IR AP S IS AP I aaas

Time
Inflation
o
" Multiple 6, values
by /S =
Axion
mass
Zeq

Distribution of initial misalignment angles
— distribution highly inhomogeneous
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Pre vs.Post-Inflation scenario

 Topological defects and Time
H Axion miniclusters ‘ Inflation
» Axion strings form due to o)
; B .
spontaneous breaking C Multiple 6, values

» Domain walls form due to explicit

breaking
» Miniclusters form due O(1) QCD Y N
fluctuations in energy l
Axion
mass

Hiramatsu et al. [1012.5502][1012.4558][1202.5851]
Fleury, Moore [1509.00026]

Klaer, Moore [1707.05566][1708.07521] Zeq
Gorghetto et al. [1806.04677][2007.04990]
Vaquero et al. [1809.09241]

Buschmann et al. [1906.00967][2108.05368]
Hindmarsh et al. [1908.03522] [2102.07723] Distribution of initial misalignment angles

— distribution highly inhomogeneous

Qdaa e s o e o B A M SR S N g e



Pre Vs. Post-Inflation sc:enarlo
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|

| Topological defects and Time
H Axion miniclusters Inflation

» Axion strings form due to

o
spontaneous breaking 2 Multiple 6, values
» Domain walls form due to explicit
breaking
» Miniclusters form due O(1) QCD Y N
fluctuations in energy l

Dark matter production starts when
the mass becomes comparable to
Hubble horizon

Zeq

Distribution of initial misalignment angles

Mg (t) ~ H (t) — distribution highly inhomogeneous

e

- How is the system affected by mass parametrisation? l
H ) —
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Overview

e SR

Studied production of axions,
energy density substructure as a
function of the axion mass
parametrisation

Extend to temperature
independent mass, model-
independent ALP

IS O I N M PG AR I NI NI PG Ay PG Ay

E—————

| V? oV
 OHBHO— o+ - =0
| ¢
V(o) = M|@|° — f2)? +mea(T) fZ(1 — cos6)
n ALP QCD axion
T, n
i) =wi () .
I 0 6.5~ 8
topological

susceptibility
Gross et al. Rev. Mod. Phys. 53(1981)
Wantz, Shellard [0910.1066]
Borsanyi et al. [1606.07494]
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Overview

B P I A A R SRS A S S Mg pios o o PP Ay SIS Ay S e o e PG Ay PG Ay B = TR e

Studied production of axions, | v2 oV
energy density substructure as a . ¢+3H¢— —¢ 96 =0
function of the axion mass
parametrisation V(6) = (9[> — J2)? +mZ(T)f2(1 ~ cos0)
Extend to temperature
independent mass, model- 7 \" .
: ALP QCD axion
independent ALP m?2(T) = m? (%) | o
I
0 6.5~ 8
Performed ~100 simulations with topological
large resolution and with n € [0,6] susceptibility
Gross et al. Rev. Mod. Phys. 53(1981)
_ - Wantz, Shellard [0910.1066]
% Assumptions Borsanyi et al. [1606.07494]
|
> PRS trick to extend dynamical range | T = 0(10)L, ma(ty) = H(t)
in the presence of strings | aitl 1 !
> . . 7. —
Capnot ach1eve physical values of L= ) H )
string tension — 10g(fa,/H)
» Domain wall instability, Npw = 1 kqcp ~ 60
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Time evolution

t <ty

Axion string dynamics: scaling regime and
massless axion waves, massive radial waves

A

€
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Evolution: The ALP simulation

?’\
2
b

7

7
P

£ 9 s R IS AP I PR R RS S IR R I Giasoa o n s oo

Lt~ 1 Zeq

String-Wall network dynamics: collapse of
defects and onset of axion field oscillations v
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n=>0

t >t v

Y

Axion field oscillations and formation of
axitons (oscillons) for large n values
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n=0

t 2 tad Axion number density frozen, free streaming of axion waves
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n=>0
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Mass parametrisation impact
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PG Ay PG Ay Bl e

— n=0,n=24 2 :
100 |- n=1, ';:2.0 | § L g(t)t Number Of Str]ngs
W — n=21=18 ] Y per causal volume
B n=4, =16
2 il
g " Z:Z : Log-growth before mass turns on
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50 el s
k= - Smooth annihilation for low n
- - ]
B ] \ . 2/(’)’L—|—4) ‘
: Scaling : : ﬂ 2 (n) o (7-‘-%/4)
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S 100 D
n=4
After network has entirely n=2

collapsed we can evolve with just
the angular d.o.f.

Study density contrast in axion
energy field

Prob. distribution p(J
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Substructure: Power spectrum

PG AP apad ol e IR R I Giasoa o n s oo
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Substructure: Power spectrum

A2(K) = g (B(R)P)

1.0III I I T I I R

0.8

102

7/11



Substructure: Power spectrum

A2(K) = g (B(R)P)
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Substructure: Power spectrum

SO UEE I alas o o IS AP I PR R RS S IR R I Giasoa o n s oo
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Substructure: Power spectrum

FSEIRSD alas o o IS AP I PR R RS S IR R I Giasoa o n s oo

» Structure appears at scales much
smaller than L;

» Power spectrum of ALP is
significantly different from QCD
axion case

T mm—
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Substructure Mlmcluster seeds

8/11



Substructure Mlmcluster seeds

L i e e

n=20 %I

o~ n==6.7 ;I
Iq_' R/Req = 0.50
— R/Req=1.00 ]
S R/Req = 10.00 3
o0
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% “‘- E

Small-scale power in the axion field
can lead to miniclusters around
equality

4 _
My = ?<Pa>Li’ ~ 107" Mg

Implemented a modified PS
prescription to estimate halo-mass

function . 1.686 2 + 3a/aeq

3 a/Qeq

m, = 10"%eV

102

e e o B el
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Dark Matter Ax10ns VS ALPs

Cold axions produced coherently
after few field oscillations

Standard linear (07) = 7°/3

Measured number of axions
at the end of our simulations
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Jark Matter: Axions vs ALPs

e e

Cold axions produced coherently
after few field oscillations

772/3

Standard linear (07)

Measured number of axions
at the end of our simulations

| Large n values are less efficient than
standard misalighment estimation

e TG Ay o

O N ® 1 I © ) S N

Linear Misalignment (6%) = 7%/3
n™S Nonlinear Misalignment

n, Misalignment -+ Strings

T T T Fit
¢t Data
S
0 : : | |
n
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ALPS

» Our results assume small string tension
when defects collapse

» Extrapolation can lead to substantially
different results ;o onet00 et al. [2007.04990

» Adding string tension might affect
more at small n

1 .25 | + ............ Flt
é ¢ Data
‘...
:w 1.00 +
~N ool S *
Sosl et b T
0.501
0 2 4 6 8
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https://arxiv.org/abs/2007.04990

Dark Matter: Axions vs ALPs

Effect of x(T) steepness
—— e

—
O,
LI

Efficiency n,/n i .ien
|

|

2 |- i Klaer, Moore. [1708.0752 1]:

°°T (q,.q,)=4.3 mt.=300
" K,..=24 mt,, =80
[ Lt.=5.12
0 2 X L | L L 2 | L N L | |
0 2 4 6 8
x—steepness n (yxT-")
For the QCD axion| efficiency
)]
seems to be comparable B 1.00
= 1
~
S
< 0.7

1.2514.

0.501

» Our results assume small string tension
when defects collapse

» Extrapolation can lead to substantially
different results ;o onet00 et al. [2007.04990

» Adding string tension might affect
more at small n

Q1

e,
LN
LN
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https://arxiv.org/abs/2007.04990

Jark Matter: Axions vs ALPs
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Effect of x(T) steepness
—— e

|

L @ Klaer, Moore. [1708.07521]] Our results assume small string tension

when defects collapse
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» Extrapolation can lead to substantially
different results ;o onet00 et al. [2007.04990

Efficiency n,/n_cien
|
|

[ x x| » Adding string tension might affect
0.5 - -
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o ata
seems to be comparable S < 1.00 '
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The effect of string tension
enhances results forjn = 2

0.501

Might be larger forn = 0
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https://arxiv.org/abs/2007.04990

ALPS

» Axion production efficiency has a
substantial variation with n

» ALPs are produced more efficiently
than QCD axions due to strings and
walls

» At large string tension results are
likely different, especially at small n

A

1S

=1

dp
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Conclus10ns

> Performed high resolution simulations for class of axion-like
particle models

> Simulating ALPs and QCD axions lead to different results in
dark matter production and substructure

» QCD axions have more small scale power leading to much
large overdensities with respect to ALPs

> ALPs have a more efficient production, we expect this
qualitatively to hold even at large (physical) values of string

tension
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Thank you for watching!




