

SIMULATIONS OF AXIONS IN THE POST-INFLATIONARY SCENARIO

Giovanni Pierobon

Cosmology from Home 2022

In collab. with C. O'Hare, J. Redondo, Y. Wong Based on arXiv:2112.05117

Motivations: CP violation in QCD

Motivations: CP violation in QCD

The strong CP problem

<u>Theory</u>

QCD vacuum structure generates a CP violating term

$$\mathcal{L}_{\theta} = -\frac{\alpha_s}{8\pi} \theta G \tilde{G}$$

Consider the matter fields (quarks) and find physical CPV source

$$\mathcal{L}_{\mathrm{CPV}} \propto \bar{\theta} G \tilde{G}$$

$$\bar{\theta} = \theta + \theta_q$$

$$\bar{\theta} = \theta + \theta_q$$

Motivations: CP violation in QCD

The strong CP problem

Theory

QCD vacuum structure generates a CP violating term

$$\mathcal{L}_{\theta} = -\frac{\alpha_s}{8\pi} \theta G \tilde{G}$$

Consider the matter fields (quarks) and find physical CPV source

$$\mathcal{L}_{\mathrm{CPV}} \propto \bar{\theta} G \tilde{G}$$

$$\bar{\theta} = \theta + \theta_q$$

Peccei-Quinn solution

Peccei-Quinn solution

 $E(a/f_a)$ Λ_{QCD}^4 -2π π 2π f_a

Vafa-Witten theorem + dynamical relaxation

$$\bar{\theta} \to \bar{\theta}(x) = a(x)/f_a$$

$$V_a \simeq -\Lambda_{\rm QCD}^4 \cos\left(\frac{a}{f_a}\right) \quad m_a^2 \simeq \Lambda_{\rm QCD}^4/f_a^2$$

Peccei-Quinn solution

Vafa-Witten theorem + dynamical relaxation

$$ar{ heta} oar{ heta}(x)=a(x)/f_a$$

$$V_a\simeq -\Lambda_{
m QCD}^4\cos\left(rac{a}{f_a}
ight)\ m_a^2\simeq \Lambda_{
m QCD}^4/f_a^2$$

Assume an abelian global symmetry,
 spontaneous breaking at large temperature

Peccei-Quinn solution

Vafa-Witten theorem + dynamical relaxation

$$ar{ heta} oar{ heta}(x)=a(x)/f_a$$

$$V_a\simeq -\Lambda_{
m QCD}^4\cos\left(rac{a}{f_a}
ight)\ m_a^2\simeq \Lambda_{
m QCD}^4/f_a^2$$

- Assume an abelian global symmetry,
 spontaneous breaking at large temperature
- Axion appears as Goldstone boson, but symmetry is anomalous. Axion potential is generated at QCD era due to <u>explicit</u> breaking

Peccei-Quinn solution

Vafa-Witten theorem + dynamical relaxation

$$ar{ heta} o ar{ heta}(x) = a(x)/f_a$$

$$V_a \simeq -\Lambda_{\mathrm{QCD}}^4 \cos\left(\frac{a}{f_a}\right) \quad m_a^2 \simeq \Lambda_{\mathrm{QCD}}^4/f_a^2$$

- Assume an abelian global symmetry,
 spontaneous breaking at large temperature
- Axion appears as Goldstone boson, but symmetry is anomalous. Axion potential is generated at QCD era due to <u>explicit</u> breaking
- Oscillations around potential behave as NR condensate

Distribution of initial misalignment angles

→ distribution highly inhomogeneous

Topological defects and Axion miniclusters

- Axion strings form due to spontaneous breaking
- Domain walls form due to explicit breaking
- Miniclusters form due $\mathcal{O}(1)$ fluctuations in energy

Hiramatsu et al. [1012.5502] [1012.4558] [1202.5851] Fleury, Moore [1509.00026] Klaer, Moore [1707.05566] [1708.07521] Gorghetto et al. [1806.04677] [2007.04990]

Vaquero et al. [1809.09241]

Buschmann et al. [1906.00967] [2108.05368]

Hindmarsh et al. [1908.03522] [2102.07723]

Distribution of initial misalignment angles

→ distribution highly inhomogeneous

Topological defects and Axion miniclusters

- Axion strings form due to spontaneous breaking
- Domain walls form due to explicit breaking
- Miniclusters form due $\mathcal{O}(1)$ fluctuations in energy

Dark matter production starts when the mass becomes comparable to Hubble horizon

$$m_a(t) \sim H(t)$$

Distribution of initial misalignment angles

→ distribution highly inhomogeneous

How is the system affected by mass parametrisation?

Overview

Studied production of axions, energy density substructure as a function of the axion mass parametrisation

Extend to temperature independent mass, model-independent ALP

$$\ddot{\phi} + 3H\dot{\phi} - \frac{\nabla^2}{a^2}\phi + \frac{\partial V}{\partial \phi} = 0 \qquad \phi = |\phi|e^{i\theta}$$

$$V(\phi) = \lambda(|\phi|^2 - f_a^2)^2 + m_a^2(T)f_a^2(1 - \cos\theta)$$

$$m_a^2(T) = m_a^2 \left(\frac{T_\star}{T}\right)^n$$

Gross et al. Rev. Mod. Phys. 53 (1981)

Wantz, Shellard [0910.1066]

Borsanyi et al. [1606.07494]

Overview

Studied production of axions, energy density substructure as a function of the axion mass parametrisation

Extend to temperature independent mass, model-independent ALP

Performed ~100 simulations with large resolution and with $n \in [0,6]$

Assumptions

- PRS trick to extend dynamical range in the presence of strings
- Cannot achieve physical values of string tension
- ightharpoonup Domain wall instability, $N_{
 m DW}=1$

$$\ddot{\phi} + 3H\dot{\phi} - \frac{\nabla^2}{a^2}\phi + \frac{\partial V}{\partial \phi} = 0 \qquad \phi = |\phi|e^{i\theta}$$

$$V(\phi) = \lambda(|\phi|^2 - f_a^2)^2 + m_a^2(T)f_a^2(1 - \cos\theta)$$

$$m_a^2(T) = m_a^2 \left(\frac{T_\star}{T}\right)^n$$

$$\kappa = \log(f_a/H)$$
 $\kappa_{\rm QCD} \sim 60$

Gross et al. Rev. Mod. Phys. 53 (1981) Wantz, Shellard [0910.1066] Borsanyi et al. [1606.07494]

$$m_a(t_1) = H(t_1)$$

 $L_1 = \frac{1}{a(t_1)H(t_1)}$

Time evolution

Axion field oscillations and formation of axitons (oscillons) for large n values

 $t\gtrsim t_{
m ad}$ Axion number density frozen, free streaming of axion waves

Mass parametrisation impact

Mass parametrisation impact

Mass parametrisation impact

$$\xi = rac{\ell(t)t^2}{\mathcal{V}}$$
 Number of strings per causal volume

Log-growth before mass turns on and destroys the network

Smooth annihilation for low n

$$\tau_2(n) = (\pi \kappa/4)^{2/(n+4)}$$

$$\kappa = \log(f_a/H)$$

After network has entirely collapsed we can evolve with just the angular d.o.f.

Study density contrast in axion energy field

$$\delta = \frac{\rho_a}{\langle \rho_a \rangle} - 1$$

7/11

7/11

$$\Delta_a^2(k) = \frac{k^3}{2\pi^2} \langle |\widetilde{\delta}(k)|^2 \rangle$$

Substructure: Minicluster seeds

Substructure: Minicluster seeds

Small-scale power in the axion field can lead to miniclusters around equality

$$M_1 = \frac{4\pi}{3} \langle \rho_a \rangle L_1^3 \sim 10^{-12} M_{\odot}$$

Implemented a modified PS prescription to estimate halo-mass function

 $\delta_c = \frac{1.686}{3} \frac{2 + 3a/a_{\text{eq}}}{a/a_{\text{eq}}}$

Cold axions produced coherently after few field oscillations

$$\rho(t) = m_a(t_1) m_a f_a^2 \langle \theta_i^2 \rangle \left(\frac{a(t_1)}{a(t)} \right)^3$$

Standard linear $\langle \theta_i^2 \rangle = \pi^2/3$

Measured number of axions at the end of our simulations

Cold axions produced coherently after few field oscillations

$$\rho(t) = m_a(t_1) m_a f_a^2 \langle \theta_i^2 \rangle \left(\frac{a(t_1)}{a(t)} \right)^3$$

Standard linear $\langle \theta_i^2 \rangle = \pi^2/3$

Measured number of axions at the end of our simulations

Large n values are less efficient than standard misalignment estimation

- Our results assume small string tension when defects collapse
- ► Extrapolation can lead to substantially different results **Gorghetto et al. [2007.04990]
- ▶ Adding string tension might affect more at small *n*

- Our results assume small string tension when defects collapse
- ► Extrapolation can lead to substantially different results Gorghetto et al. [2007.04990]
- ▶ Adding string tension might affect more at small n

For the QCD axion efficiency seems to be comparable

- Our results assume small string tension when defects collapse
- ► Extrapolation can lead to substantially different results Gorghetto et al. [2007.04990]
- ▶ Adding string tension might affect more at small *n*

For the QCD axion efficiency seems to be comparable

The effect of string tension enhances results for n=2

Might be larger for n = 0

- Axion production efficiency has a substantial variation with n
- ► ALPs are produced more efficiently than QCD axions due to strings and walls
- At large string tension results are likely different, especially at small n

Conclusions

- Performed high resolution simulations for class of axion-like particle models
- Simulating ALPs and QCD axions lead to different results in dark matter production and substructure
- ➤ QCD axions have more small scale power leading to much large overdensities with respect to ALPs
- ➤ ALPs have a more efficient production, we expect this qualitatively to hold even at large (physical) values of string tension

Thank you for watching!