Primordial black holes and gravitational waves from dissipative effects during inflation

Alejandro Pérez Rodríguez

Work in progress with G. Ballesteros, M.A.G. García, M. Pierre, J. Rey

Cosmology from home conference, july 2022

INTRODUCTION. Primordial black holes

• Press-Schechter: primordial power spectrum $\mathcal{P}_{\mathcal{R}}$ peaked at k enhances PBHs production with mass $M(k) \approx 10^{18} \left(\frac{k}{7 \times 10^{13} \text{Mpc}^{-1}}\right)^{-2} \text{[g]}$

• Assuming gaussianity, value for δ_c , rad. domination... \rightarrow Peak ~ $10^{-2} \rightarrow f_{PBH} \sim 1$

INTRODUCTION. Gravitational waves

- Sourced by second order scalar perturbations (square of $\mathcal{P}_{\mathcal{R}}$)
- Equivalence scale-mass-frequency:

$$M(k) \approx 10^{18} \left(\frac{k}{7 \times 10^{13} \text{Mpc}^{-1}}\right)^{-2} [\text{g}]$$
 (PBHs)
 $\frac{k}{\text{Mpc}^{-1}} = 6.5 \times 10^{14} \frac{f}{\text{Hz}}$ (GWs)

• If $f_{PBH} \sim 1 \longrightarrow$ GW background potentially detectable by LISA

Previous work: warm inflation framework. Arya (2019); Bastero-Gil & Subías Díaz-Blanco (2021)

BASIC CONCEPTS. Background dynamics

• Coupling between inflaton and radiation

$$\rho_r = \frac{\pi^2}{30} g_\star T^4$$

• Background eqs.: extra friction-dissipation

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + V_{,\phi} = 0$$
$$\dot{\rho}_r + 4H\rho_r = \Gamma\dot{\phi}^2$$

BASIC CONCEPTS. Perturbation dynamics

- Extra perturbations: $\delta\phi$, $\delta\dot{\phi}$, φ , $\delta\rho_r$
- No single equation for \mathcal{R}
- Fluctuation dissipation thm. in non-eq. QFT \rightarrow stochastic transfer terms
- Summary: system of <u>coupled</u> differential equations with stochastic sources

$$\delta \ddot{\phi} + [\ldots] = f_{\phi}(t) \boldsymbol{\xi}(t)$$

$$\delta \dot{\rho}_r + [\ldots] = f_{\rho_r}(t) \boldsymbol{\xi}(t)$$

$$\dot{\varphi} + [\ldots] = 0$$

SOLVING SDEs. Numerical approaches

Main idea: solve for the thermally averaged power spectrum $\mathcal{P}_{\mathcal{R}} = \frac{k^3}{2\pi^2} \langle |\mathcal{R}|^2 \rangle$

- Fokker-Planck
 - SDEs \rightarrow ODEs for the correlations
 - Solve for

$$\begin{split} &\langle |\delta\phi|^2 \rangle, \langle |\delta\dot{\phi}|^2 \rangle, \langle |\delta\rho_r|^2 \rangle, \langle |\varphi|^2 \rangle, \\ &\langle \delta\phi^* \delta\dot{\phi} \rangle, ..., \langle \delta\rho_r^* \varphi \rangle \end{split}$$

• Recast into

$$\langle |\mathcal{R}|^2 \rangle \longrightarrow \mathcal{P}_{\mathcal{R}}$$

- Montecarlo
 - Randomize source ξ for each time
 - SDEs \rightarrow ODEs for the perturbations
 - Compute particular realization of $|\mathcal{R}|^2$
 - Iterate and take average

 $\langle |\mathcal{R}|^2 \rangle \longrightarrow \mathcal{P}_{\mathcal{R}}$

A SPECIFIC MODEL. Background dynamics

Reminds to ultra-slow roll, but the physics of the perturbations is different

A SPECIFIC MODEL. Power spectrum and GWs

A SPECIFIC MODEL. Simplified analytical approach

Several simplifications:

• Decouple $\delta \phi$ equation $\delta \ddot{\phi} + (\delta \phi, \delta \dot{\phi}, \text{background}) = \tilde{f}_{\phi}(t)\xi(t)$

• Approximate:
$$\mathcal{R} \approx -\frac{\delta\phi}{\phi'}$$

- Parametrize background quantities as piecewise constants
- Solve homogeneous equation $\delta \ddot{\phi} + (\delta \phi, \delta \dot{\phi}, \text{background}) = 0$

A SPECIFIC MODEL. Simplified analytical approach

- Construct Green's function
- Formally solve inhomogeneous equation

$$\delta\phi(t) = \delta\phi^{(h)}(t) + \int dt' G(t, t') \underbrace{f_{\phi}(t')\xi(t')}_{\text{(random) source}} \\ \mathcal{P}_{\delta\phi} = \mathcal{P}_{\delta\phi}^{(h)}(t) + \int dt' G(t, t')^2 f_{\phi}(t')^2 \longrightarrow \mathcal{P}_{\mathcal{R}}$$
Carries initial conditions
Carries initial Independent of initial conditions

A SPECIFIC MODEL. Perturbation dynamics

Previous related work: Hall et al. (2003), López Nacir et al. (2012)

A SPECIFIC MODEL. Consistency between methods

Credit: M. Pierre

CONCLUSIONS AND PROSPECTS

- Dissipative effects in inflation \rightarrow new physics in perturbation dynamics:
 - Stochastic dynamics of the perturbations
 - Thermal atractor due to thermal noise
 - Enhancement of certain modes
- The enhancement produces a peak in the power spectrum
- This could explain PBHs dark matter and SGW LISA signals