Bispectrum and finite volume effects: window-convolution

Cosmology from Home 2022

Galaxy clustering

Galaxy distribution as an independent probe for the cosmological parameters

Characterized by its summary statistics

Power Spectrum (P)

$$
\left\langle\delta\left(\mathbf{k}_{1}\right) \delta\left(\mathbf{k}_{2}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) P\left(\mathbf{k}_{1}\right)
$$

Bispectrum captures non-Gaussianity

Power Spectrum (P) + Bispectrum (B) $+\ldots$

... the filamentary structure

$$
Q\left(k_{1}, k_{2}, k_{3}\right) \equiv \frac{B\left(k_{1}, k_{2}, k_{3}\right)}{P\left(k_{1}\right) P\left(k_{2}\right)+P\left(k_{2}\right) P\left(k_{3}\right)+P\left(k_{3}\right) P\left(k_{1}\right)}
$$

Why bispectrum?

Bispectrum improves*
bias/cosmological parameters constraints
Sefusatti+06, Gagrani+18, Yankelevich+18, Karagiannis+18, Chudaykin+19, Hahn+19, Oddo+21, ...
*break degeneracies, tighten constraints, ...

Including bispectrum monopole (BOSS DR12)

Constraint on cosmological params:

Philcox\&Ivanov21 (also: D'Amico+19)
also one-loop bispectrum: Philcox+22, D'Amico+22b

Constraint on primordial non-Gaussianity:

Cabass+22b (also: D'Amico+22a)
non-local PNG: Cabass+22a, bispectrum is necessary

Including bispectrum multipoles?

Rizzo, Moretti, Pardede+ (arXiv: 2204.13628) incl. $P_{\dot{\ell}}$ Moretti, Rizzo, Pardede+ (in prep.)

The bispectrum multipoles

$$
\begin{aligned}
& B_{L}\left(k_{1}, k_{2}, k_{3}\right) \\
& \quad=\frac{2 L+1}{4 \pi} \int d \cos \theta \int d \phi B\left(k_{1}, k_{2}, k_{3}, \theta, \phi\right) \mathcal{L}_{L}(\cos \theta) .
\end{aligned}
$$

- galaxies are not in their rest frame
- $m \neq 0$ contains negligible information Gagrani+16
- tree-level: only even multipoles exist $B_{0}, B_{2}, B_{4} \ldots$

Tree-level bispectrum

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=B^{(\mathrm{det})}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)+B^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)
$$

$$
\begin{gathered}
B^{(\mathrm{det})}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=2 Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right) Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right) Z_{1}\left(\mathbf{k}_{2}, \hat{\mathbf{x}}\right) P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right) \\
+ \text { cyc. }
\end{gathered}
$$

$$
\begin{gathered}
B^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=\frac{1}{\bar{n}}\left[\left(1+\alpha_{1}\right) b_{1}+\left(1+\alpha_{3}\right) f\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}\right)^{2}\right] Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right) P_{L}\left(k_{1}\right) \\
+ \text { cyc. }+\frac{1+\alpha_{2}}{\bar{n}^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& Z_{1}(\mathbf{k}, \hat{\mathbf{x}})=b_{1}+f\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}\right)^{2} \\
& Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=\frac{b_{2}}{2}+b_{1} F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+b_{g_{2}} S\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \\
& \quad f\left(\hat{\mathbf{k}}_{12} \cdot \hat{\mathbf{x}}\right)^{2} G\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+\frac{f\left(\mathbf{k}_{12} \cdot \hat{\mathbf{x}}\right)}{2}\left[\frac{\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}}{k_{1}} Z_{1}\left(\mathbf{k}_{2}, \hat{\mathbf{x}}\right)+\frac{\hat{\mathbf{k}}_{2} \cdot \hat{\mathbf{x}}}{k_{2}} Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right)\right] \quad \mathbf{k}_{12} \equiv \mathbf{k}_{1}+\mathbf{k}_{2}
\end{aligned}
$$

Dark matter halo catalogs

1. 298 Minerva (N -body) Grieb+16
2. 10000 Pinocchio (3LPT) Monaco+02

$$
@_{Z}=1
$$

Λ CDM cosmology
$L_{\text {box }}=1500 \mathrm{Mpc} / \mathrm{h}$
$V_{\text {eff }} \simeq 1000(\mathrm{Gpc} / \mathrm{h})^{3}$
$\simeq 2 x$ volume in Nishimichi+20

1. 298 Minerva (N-body) Grieb+16
2. 10000 Pinocchio (3LPT) Monaco+02

- approx. based on Lagrangian pert. theory
- relatively fast and accurate
 provide a robust
estimate of the covariance

Including the multipoles

How to measure the bispectrum?

Scoccimarro estimator Scoccimarro +15

FFT-based!

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B}} \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}_{L}\left(\mathbf{q}_{1}\right) \tilde{\delta}\left(\mathbf{q}_{2}\right) \tilde{\delta}\left(\mathbf{q}_{3}\right)
$$

binning operator
choose one side as the $\operatorname{LOS} \quad \tilde{\delta}_{L}(\mathbf{q}) \equiv \int d^{3} x \tilde{\delta}(\mathbf{x}) \mathcal{L}_{L}(\mathbf{q} \cdot \mathbf{x}) e^{-i \mathbf{q} \cdot \mathbf{x}}$
window function $\tilde{\delta}(\mathbf{x})=W(\mathbf{x}) \delta(\mathbf{x})$
$\int_{k_{1}} d^{3} q_{1} \equiv \int_{\left|k_{1}-\Delta k / 2\right| \leq k_{1} \leq\left|k_{1}+\Delta k / 2\right|} d^{3} q_{1} \quad V_{B} \equiv \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\mathbf{q}_{123}\right)$

Survey window effects in bispectrum

Estimator is biased by window function

We need to Fourier transform $\delta(\mathbf{x})$

Baumgart, Fry 1991

$$
\Longrightarrow \tilde{\delta}(\mathbf{k})=\int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} W\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \delta\left(\mathbf{k}^{\prime}\right)
$$

In bispectrum ...

Equilateral configurations

window convolution will mix modes

10000 Pinocchio sphere catalogue

Note: this is a huge volume $\approx 3500[\mathrm{Gpc} / h]^{3}$
... main effect is on large scale

To include window effect in bispectrum

Schematically (monopole with no binning operator)

$$
\tilde{B}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3}} B_{W}\left(\vec{k}_{1}-\vec{p}_{1}, \vec{k}_{2}-\vec{p}_{2}\right) B\left(\vec{p}_{1}, \vec{p}_{2}\right)
$$

- 6D integral
- Time ~hours/evaluation
- Not feasible for likelihood analysis

An approximation

$$
\tilde{B}\left[P_{L}\right] \simeq B\left[\tilde{P}_{L}\right]
$$

1DFFTLog-approx

$$
\tilde{B}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \simeq Z\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \tilde{P}_{L}\left(k_{1}\right) \tilde{P}_{L}\left(k_{2}\right)+\text { cyc }
$$

- Reduced to power spectrum-window convolution see e.g. Wilson+15, Castorina+17, d'Amico+19
- BOSS DR 11/12 Gil-Marin+14a, b and $+16 \mathrm{a}, \mathrm{b}$
- Recently used in d'Amico +19,+22
- Doesn't work for squeezed triangles

Exact bispectrum window convolution*

Taking $\left\langle\hat{B}_{L}\right\rangle=\tilde{B}_{L}$

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right) & =\frac{2 L+1}{V_{B}} \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\vec{q}_{123}\right) \\
& \times \int d^{3} x_{3} \int d^{3} x_{13} \int d^{3} x_{23} e^{-i \vec{q}_{1} \cdot \vec{x}_{13}} e^{-i \vec{q}_{2} \cdot \vec{x}_{23}} \zeta\left(\vec{x}_{13}, \vec{x}_{23}, \hat{x}_{3}\right) \\
& \times W\left(\vec{x}_{1}\right) W\left(\vec{x}_{2}\right) W\left(\vec{x}_{3}\right) \mathcal{L}_{L}\left(\hat{q}_{1} \cdot \hat{x}_{3}\right)
\end{aligned}
$$

As a matrix multiplication

We showed that bispectrum-window convolution can be casted into a 1D integral

2DFFTLog

$$
\tilde{B}_{e}\left[T_{i}\right]=\sum_{j, e^{\prime}} \mathcal{M}_{l e l}\left[T_{i,}, T_{j}^{\prime} \mid B_{e}\left[T_{j}^{\prime}\right]\right.
$$

Mixing matrix
Computable via (2D) FFTLog

Bispectrum
Function of three sides $\left(k_{1}, k_{2}, k_{3}\right)$ e.g. 2D-FFTLog (Fang+20)
of the window 3PCF multipoles

Spherical window convolution in real-space

Sphere catalogue:

Minerva/Pinocchio carved on a sphere of $R \sim 434 \mathrm{Mpc} / \mathrm{h}$

Total vol $\left.=700^{3}(\mathrm{Mpc} / h)\right]^{3}$

Full-set triangles

Fit on Pinocchio mocks

Recovering bias parameters

Analysis on Minerva

 data$\approx 1 / 4$ times volume in Nishimichi+20
≈ 10 times $z \in[1.5$, 1.8] Euclid volume

Window convolution computation time

Takes ~2 seconds
\Rightarrow comparable to a typical Boltzmann solver call

Conclusions

- Including bispectrum multipoles analysis is important but come with extra modelling complexity, ex: survey window effects
- We gave an efficient formulation for bispectrum window convolution
- We tested the formulation in ideal case of spherical window convolution in real space
- Useful in future surveys when you want to extract signal, free from systematic effects

Thank you!

