COSMOLOGY FROM HOME 2022 IN MERGING NUCLEAR STAR CLUSTERS ARXIV: 2205.12289

DIPTAJYOTI MUKHERJEE (<u>DIPTAJYM@ANDREW.CMU.EDU</u>) PHD CANDIDATE | CARNEGIE MELLON UNIVERSITY

EVOLUTION OF MASSIVE BLACK HOLE BINARIES

Image credit: NASA, ESA, and J. Olmstead (STScl)

HIERARCHICAL GROWTH

Simulation performed using GADGET-2 (Springel 2005)

~kpc

J0749+2255 HST WFC3/UVIS F475W F814W

< pc

J0841+4825

NA E

Image credits: NASA, ESA, Hsiang-Chih Hwang (JHU), Nadia Zakamska (JHU), Yue Shen (UIUC)

MASSIVE BLACK HOLE BINARIES

To maximize LISA science output, theoretical advances needed in dynamics and evolution!

One of the most important LISA sources

Theories of formation and assembly uncertain

Dynamics sensitive to the surrounding environment

~kpc

dynamical friction from surrounding media

dynamical friction, stellar hardening dependent on host

~pc

~milli-pc

stellar hardening dependent on host, GW emission

Uncertain timescales due to issues like final pc problem

Figures based on Amaro-Seoane+ (2022)

COSMOLOGICAL SIMULATIONS

~pc

~milli-pc

NEED HIGH RESOLUTION N-BODY SIMULATIONS

UNRESOLVED IN COSMOLOGICAL SIMULATIONS

6

NUCLEAR STAR CLUSTERS

~kilo-pc

7

~milli-pc

Image credits: NASA/ESA & EHT collaboration

MBH BINARIES IN NUCLEAR STAR CLUSTERS

- Ogiya+ (2020) showed that NSCs greatly accelerate transition to GW dominated phase
- Robust and works better for lower mass ratio binaries
- dynamics

Motivated to study how realistic models of NSCs with mass spectrum affect

SIMULATING PC SCALE DYNAMICS

High-resolution -

Can resolve three body scattering

Accurate

Fast

Taichi

FMM based solver for accurate N-body dynamics

> O(N) scaling

MODELS

Masses of MBHs in LISA band

 $M_{\text{primary}} = 10^6 M_{\odot}$ q = 1.0, 0.1, 0.01

Realistic NSCs with a two-component mass spectrum

 $M_{\rm NSC} = 10^7 M_{\odot}$ $N_{\rm MS} : N_{\rm BH} = 1 : 0.005$

 Collisional relaxation: segregated vs. non-segregated

Mukherjee+ (2022)

MODELS

20 pc

Pre-binary stage

Middle stage

Hard-binary stage

Begelman+ (1980), Merritt (2013), Ogiya+ (2020)

VISUALIZING THE MERGER PROCESS

Mukherjee+ (2022)

EVOLUTION OF ORBITAL PARAMETERS

EVOLUTION OF MBH BINARY

HARD BINARY PHASE PRE-HARD BINARY PHASE

EVOLUTION OF THE MBH BINARY

Relaxed models have a lower density than non-relaxed models until a certain radius!

ECCENTRIC ORBITAL PARAMETERS

GRAVITATIONAL WAVE TIMESCALES

IMPROVING COSMOLOGICAL SIMULATIONS

CONCLUSIONS

- relaxed NSCs
- especially lower mass MBHs
- scale
- Discussed potential improvements to future cosmological simulations

Able to ascertain the differences in evolution of MBHs in relaxed and non-

Showed that NSCs are extremely robust and efficient at merging MBHs,

Presented Taichi as an effective N-body code to solve problems of this