Canonical and Non-canonical Inflation: In light of recent BICEP/Keck Results Cosmology from Floure 2022

Swagat Saurav Mishra

Postdoctoral Research Associate

Centre for Astronomy and Particle Theory (CAPT) School of Physics and Astronomy, University of Nottingham

July 2022

Swagat Saurav Mishra, CAPT, Nottingham

Canonical and Non-canonical Inflation in the light of the recent BICEP/Keck results

Swagat S. Mishra (Nottingham U.), Varun Sahni (IUCAA, Pune) Feb 7, 2022

33 pages e-Print: 2202.03467 [astro-ph.CO] View in: ADS Abstract Service

 1 citation

Prologue

- Developments in the past two decades \Rightarrow standard scenario of Cosmology (it e.g flat Λ CDM model as a toy model).
- Evolution of the Universe from about 1 sec to 13.8 billion years (background and perturbation level)

A reasonably successful theory!!

Assumptions on Composition

- Dark Matter \rightarrow CDM / ?
- **2** Dark Energy $\longrightarrow \Lambda/?$

Assumptions on Initial Conditions

- Homogeneity and Isotropy on large length scales
- Spatial flatness
- Almost scale invariant, nearly Gaussian and adiabatic initial density fluctuations

What creates the seed fluctuations?

COSMIC INFLATION : a transient period of rapid accelerated expansion of space

Sets Natural Initial Conditions for the Hot Big Bang Phase

The standard scenario of inflation has two aspects –

Background Evolution/Dynamics

(Solves/addresses the horizon and flatness problem)

Linear Perturbations due to Quantum Fluctuations during an epoch of accelerated expansion of space.

(Provides the origin/seed fluctuations for the hot Big Bang inhomogeneities)

Origin of CMB fluctuations and LSS in the Universe

Inflationary Background Dynamics

A single scalar field minimally coupled to Gravity

Inflationary Dynamics of a Scalar Field

$$\begin{array}{ll} \mbox{Density} & \rho_{\phi} = \frac{1}{2} \dot{\phi}^2 + V(\phi) \\ \mbox{Pressure} & p_{\phi} = \frac{1}{2} \dot{\phi}^2 - V(\phi) \end{array}$$

Friedmann Equation

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \left(\frac{8\pi G}{3}\right)\rho_{\phi},$$

Motion of the scalar field is governed by

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

Condition for Inflation $\dot{\phi}^2 < V(\phi)$

$$\epsilon_{\scriptscriptstyle H} = \frac{1}{2m_p^2} \frac{\dot{\phi}^2}{H^2} = -\frac{\dot{H}}{H^2} < 1$$

Prolonged period of inflation

$$|\eta_{\scriptscriptstyle H}| = |-\frac{\ddot{\phi}}{H\dot{\phi}}| < 1$$

Slow-roll Regime of Inflation

$$\epsilon_{\scriptscriptstyle H} = -\frac{\dot{H}}{H^2} = \frac{\dot{\phi}^2}{2m_p^2 H^2} \ll 1 \ , \ \ |\eta_{\scriptscriptstyle H}| = \frac{\ddot{\phi}}{H\dot{\phi}} \ll 1$$

Cosmological Equations become

$$H^2 \simeq \frac{1}{3m_p^2} V(\phi) \ , \qquad \dot{\phi} = -\frac{V'(\phi)}{3H}$$

 \Rightarrow Quasi de Sitter Expansion $a(t) = a_i e^{H t}$

Perturbations during Inflation

Light fields $m_{\phi} < H$ in quasi de Sitter space receive quantum fluctuations on macroscopically large length scales (super-Hubble).

Full System during Inflation

System = **Gravity**
$$(g_{\mu\nu})$$
 + **Scalar Field** (ϕ)

$$S[g_{\mu\nu},\phi] = \int d^4x \,\sqrt{-g} \,\left(\frac{m_p^2}{2} \,R - \frac{1}{2} \,\partial_\mu \phi \,\partial_\nu \phi \,g^{\mu\nu} - V(\phi) + \dots\right)$$

Particularly two (gauge invariant) light fields are guaranteed to exist –

Comoving Curvature Perturbation

$$-\zeta(t,\vec{x}) = \frac{1}{\sqrt{2\epsilon_H}} \frac{\delta\phi}{m_p} + \Psi$$

(Later becomes density and temperature fluctuations)

2 Tensor Perturbation (Transverse, traceless $h_{ij}(t, \vec{x})$ – relic Gravitational Waves)

$\mathbf{Input} \longrightarrow \mathbf{Comp}\textbf{-}\mathbf{I} \longrightarrow \mathbf{Comp}\textbf{-}\mathbf{II} \longrightarrow \mathbf{Output}$

Inflationary SR Power-spectrum

During slow-roll $\epsilon_H, \eta_H \ll 1$ Primordial Power-spectra at least at large scales –

$$\mathcal{P}_{\zeta} = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}$$
$$\mathcal{P}_{\mathcal{T}} = A_t \left(\frac{k}{k_*}\right)^{n_T}$$

CMB pivot scale $k_* = 0.05 \text{ Mpc}^{-1}$

$$A_s = \frac{1}{8\pi^2} \left(\frac{H_*}{m_p}\right)^2 \frac{1}{\epsilon_H^*}$$
$$A_T = \frac{2}{\pi^2} \left(\frac{H_*}{m_p}\right)^2$$

Scalar and Tensor Spectral Index

$$n_{S} = 1 + 2\eta_{H}(k_{*}) - 4\epsilon_{H}(k_{*})$$

$$n_{\scriptscriptstyle T}=-2\epsilon_{\scriptscriptstyle H}$$

Tensor to Scalar Ratio

$$r = 16\epsilon_{_H}(k_*)$$

Implications of CMB Observations

Shallow/Asymptotically flat potentials

Whole family of Monomial potential $V(\phi)\sim \phi^p$ is disfavoured

What we know from Observations

$$r \leq 0.036 \ , \ \ n_{\scriptscriptstyle S} \in [0.957, 0.976]$$

 $H_{\rm inf} \le 1.93 \times 10^{-5} \ m_p = 4.6 \times 10^{13} \ {\rm GeV}$

$$\Rightarrow R \simeq 12 \left(\frac{H_{\text{inf}}}{m_p}\right)^2 \le 4.7 \times 10^{-9}$$

$$\epsilon_V = \frac{m_p^2}{2} \left(\frac{V'}{V}\right)^2 , \ \eta_V = m_p^2 \frac{V''}{V}$$

$$\epsilon_V \simeq \epsilon_H \le 0.00225$$
 and $w_\phi \le -0.9985$

$$|\eta_V| \simeq 0.02$$

$$\frac{\Delta\phi}{m_p} \le 5 \times \left(\frac{N_*}{60}\right)$$

T-model α -attractors

Potential

$$V(\phi) = V_0 \tanh^p \left(\lambda \frac{\phi}{m_p}\right)$$

Predictions of T-model $\left| n_s = 1 - \frac{2}{N_*} \right|$, $r = \frac{2}{\lambda^2 N_*^2}$

Non-canonical Inflation

Non-canonical Lagrangian

$$\begin{aligned} \mathcal{L}(X,\phi) &= X\left(\frac{X}{M^4}\right)^{\alpha-1} - V(\phi) \\ \text{Density} \quad \boxed{\rho_{\phi} = (2\alpha - 1) X\left(\frac{X}{M^4}\right)^{\alpha-1} + V(\phi)} \\ \text{Pressure} \quad \boxed{p_{\phi} = X\left(\frac{X}{M^4}\right)^{\alpha-1} - V(\phi)} \\ \text{EOM} \quad \boxed{\ddot{\phi} + \frac{3H\dot{\phi}}{2\alpha - 1} + \left(\frac{V'(\phi)}{\alpha(2\alpha - 1)}\right) \left(\frac{2M^4}{\dot{\phi}^2}\right)^{\alpha-1} = 0} \end{aligned}$$

Non-canonical Monomial Potential $V(\phi) \sim \phi^p$

$$\begin{array}{ll} \text{Spectral index} \quad n_{\scriptscriptstyle S} = 1 - 2 \, \left(\frac{\gamma + p}{2 \, \gamma \, N_* + p} \right) \\ \text{Tensor-to-scalar ratio} \quad r = \frac{1}{\sqrt{2\alpha - 1}} \left(\frac{16 \, p}{2 \, \gamma \, N_* + p} \right) \\ \text{With} \quad \gamma = \frac{2 \, \alpha + p(\alpha - 1)}{2 \, \alpha - 1} \\ \text{Consistency relation} \quad \boxed{r = -\frac{8}{\sqrt{2\alpha - 1}} \, n_{\scriptscriptstyle T}} \end{array}$$

For $\alpha \gg 1$, we obtain asymptotic solution

$$n_{\scriptscriptstyle S} = 1 - \frac{3\,p+2}{(p+2)\,N_* + p} \,, \quad r = \frac{1}{\sqrt{2\alpha - 1}} \left(\frac{16\,p}{(p+2)\,N_* + p} \right)$$

Predictions of Non-canonical Monomial potential

Predictions of Non-canonical Monomial potential

Contrasting with T-model predictions

Plateau Potentials:

Issue of Initial conditions

Shallow/Asymptotically flat potentials

Margarita Potential

CMB predictions of Margarita Potential

Addressing the problem of initial conditions

