Cosmology with Marked Power Spectra

Elena Massara

Cosmology from Home 2022

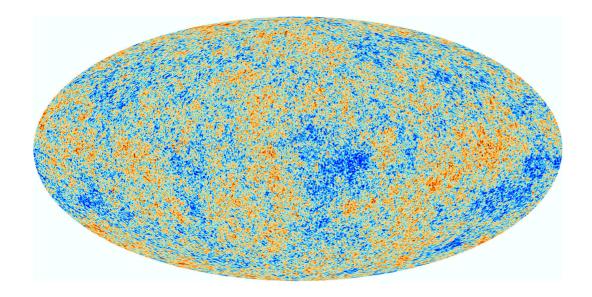
THE LARGE SCALE STRUCTURE

The distribution of matter in the Universe is sensitive to:

- properties of dark matter
- nature of dark energy
- neutrino mass scale
- initial condition of the Universe

 $\Omega_m, \Omega_b, h, \sigma_8, n_s, M_\nu$

NON-GAUSSIAN density field



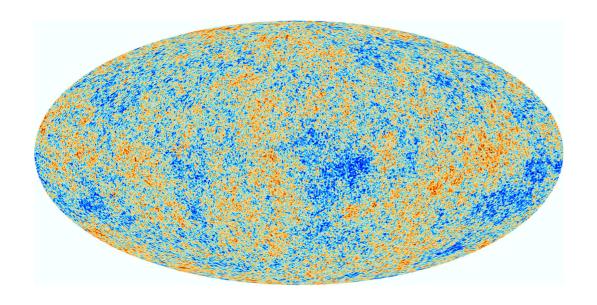
$\delta(\mathbf{k}) \sim N(0, P(\mathbf{k}))$

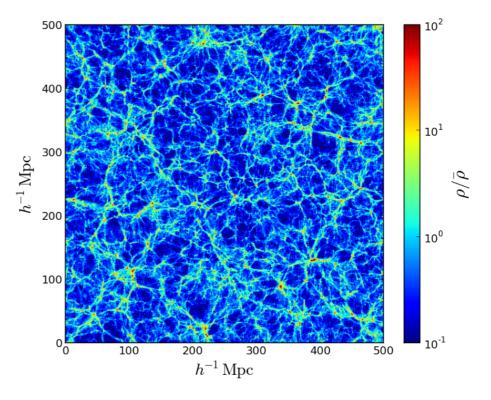
All information contained in 2-pt statistics:

- correlation function
- power spectrum

Higher order statistics are not needed to describe the field

NON-GAUSSIAN density field





 $\delta(\mathbf{k}) \sim N(0, P(\mathbf{k}))$

All information contained in 2-pt statistics:

- correlation function
- power spectrum

Higher order statistics are not needed to describe the field

NOT all information contained in 2-pt statistics

 $\delta(\mathbf{k}) \nsim N(0, P(\mathbf{k}))$

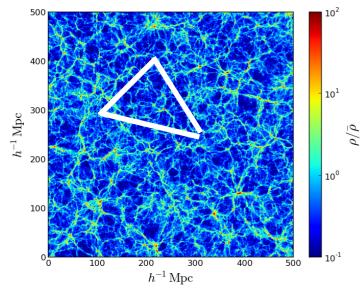
Higher order statistics contain information to describe the field

NON-GAUSSIAN statistics

A variety of statistics have been proposed to retrieve the cosmological information beyond the two point functions

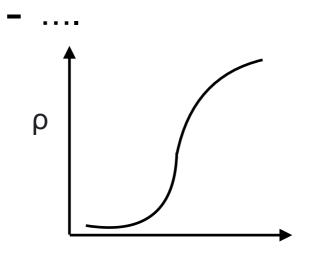
Higher-order statistics:

- bispectrum
- trispectrum



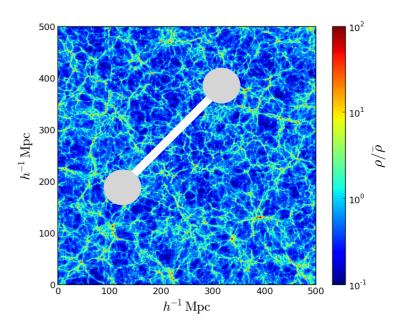
Different summary statistics:

- peaks
- voids
- scattering transforms
- minimum spanning tree



Non-linear transformations of the field:

- log-transformations
- <u>marked power</u>
 <u>spectra</u>



And many others ...

COSMOLOGY with VOIDS

Low-density regions are good laboratories to study cosmology because

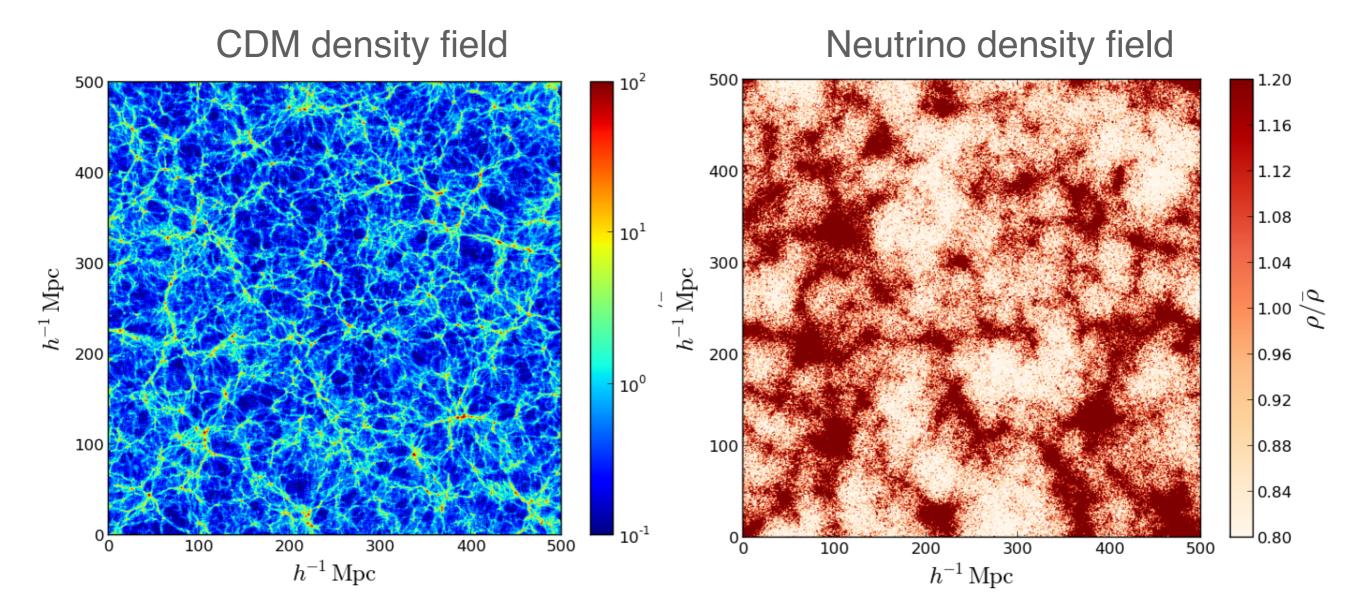
• They are unvirialized, thus they are expected to retain most of their initial cosmological information

COSMOLOGY with LOW-DENSITY regions

Low-density regions are good laboratories to study cosmology because

- They are unvirialized, thus they are expected to retain most of their initial cosmological information
- They are sensitive to diffuse components such as
 - neutrinos
 - dark energy

COSMOLOGY with LOW-DENSITY regions



COSMOLOGY with LOW-DENSITY regions

Low-density regions are good laboratories to study cosmology because

- They are unvirialized, thus they are expected to retain most of their initial cosmological information
- They are sensitive to diffuse components such as
 - neutrinos
 - dark energy
- Screening mechanism are inefficient in them

LOW DENSITY REGIONS

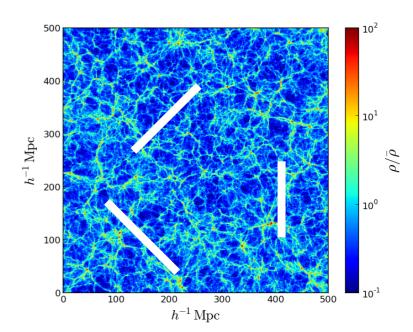
Low-density regions are good probe to study cosmology

- 1. Do 2-pt functions depend on low-density regions?
- 2. Can we modify standard 2-pt functions to incorporate more information from low-density regions?

CORRELATION FUNCTION

Correlation function

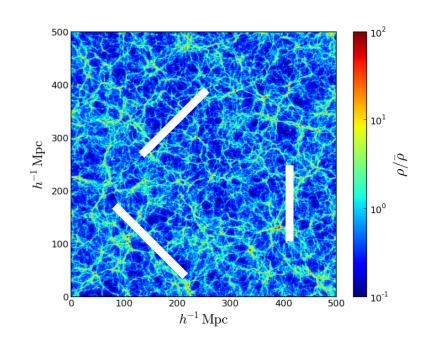
$$1 + \xi(r) = \frac{V}{N^2} \sum_{i,j=1}^{N} \delta_{D}(|\vec{x_i} - \vec{x_j}| - r)$$



CORRELATION FUNCTION

Correlation function

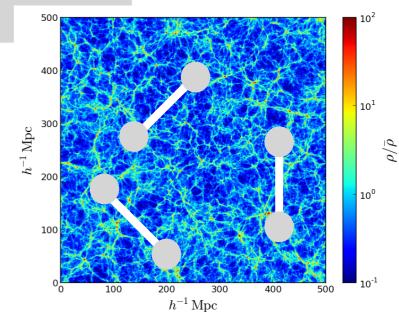
$$1 + \xi(r) = \frac{V}{N^2} \sum_{i,j=1}^{N} \delta_{D}(|\vec{x_i} - \vec{x_j}| - r)$$



Marked correlation function

$$1 + M(r,\phi) = \frac{V}{N^2} \sum_{i,j=1}^{N} \frac{\delta_{D}(|\vec{x_i} - \vec{x_j}| - r) m(\vec{x_i},\phi) m(\vec{x_j},\phi)}{\bar{m}^2} = \bar{m}^{500}$$

- 1. m depends on the local density around each point
- 2. m up-weights low-density regions and down-weights high-density regions



MARKED CORRELATION FUNCTION

- -

$$1 + M(r,\phi) = \frac{V}{N^2} \sum_{i,j=1}^{N} \frac{\delta_{D}(|\vec{x_i} - \vec{x_j}| - r) m(\vec{x_i},\phi) m(\vec{x_j},\phi)}{\bar{m}^2}$$

$$m(\vec{x}, \phi = R, p, \delta_s) = \left[\frac{1+\delta_s}{1+\delta_s+\delta_R(\vec{x})}\right]^p$$

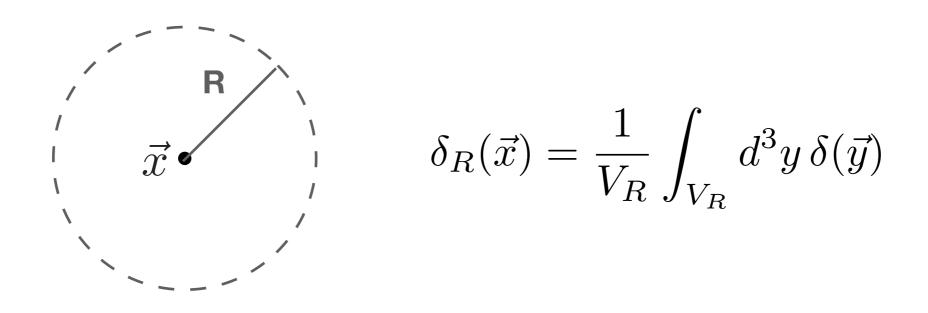
(M. White 2016)

MARKED CORRELATION FUNCTION

$$1 + M(r,\phi) = \frac{V}{N^2} \sum_{i,j=1}^{N} \frac{\delta_{D}(|\vec{x_i} - \vec{x_j}| - r) m(\vec{x_i},\phi) m(\vec{x_j},\phi)}{\bar{m}^2}$$

$$m(\vec{x}, \phi = R, p, \delta_s) = \left[\frac{1+\delta_s}{1+\delta_s+\delta_R(\vec{x})}\right]^p$$

(M. White 2016)



MARKED CORRELATION FUNCTION

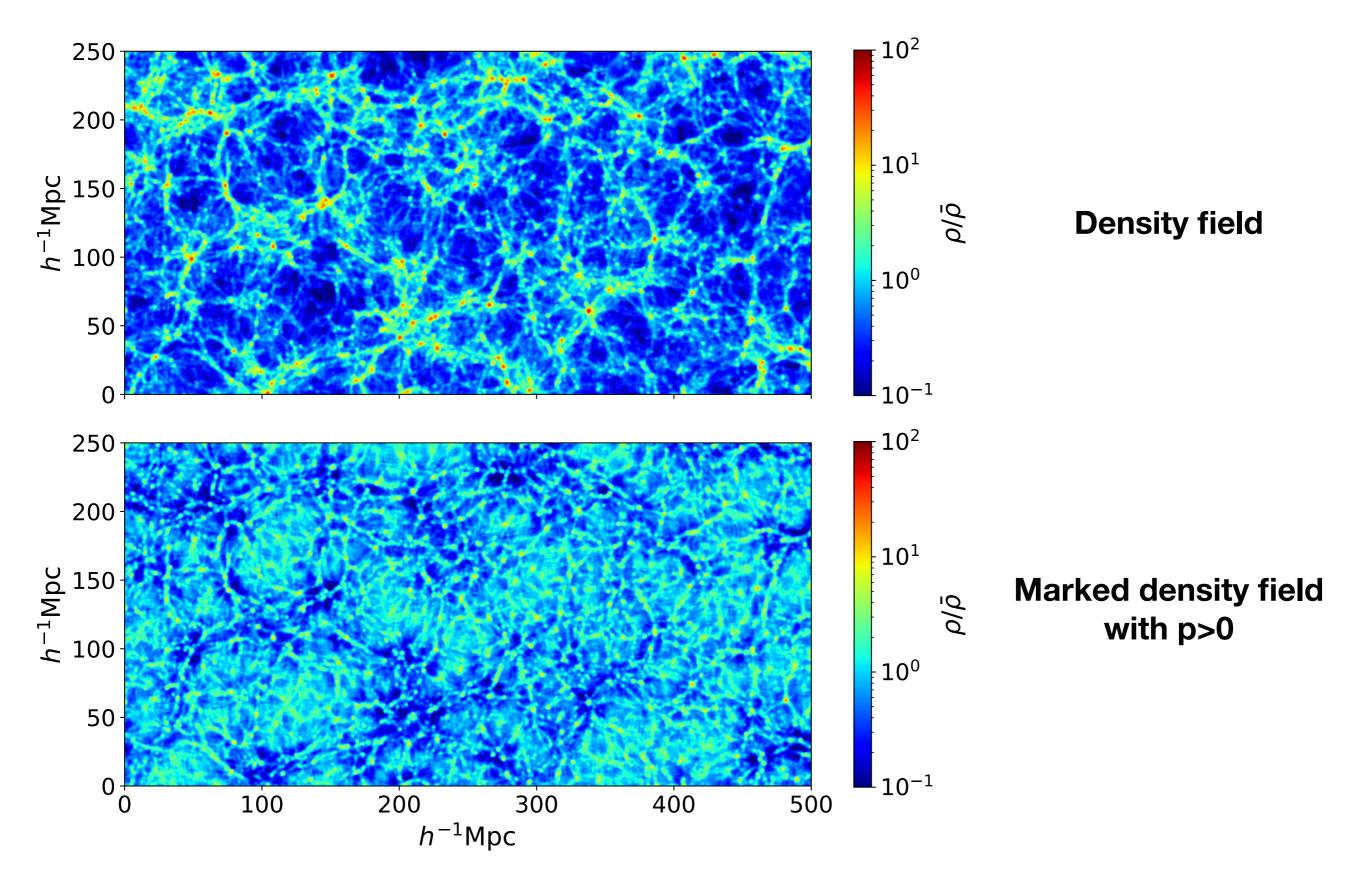
$$1 + M(r,\phi) = \frac{V}{N^2} \sum_{i,j=1}^{N} \frac{\delta_{D}(|\vec{x_i} - \vec{x_j}| - r) m(\vec{x_i},\phi) m(\vec{x_j},\phi)}{\bar{m}^2}$$

$$m(\vec{x}, \phi = R, p, \delta_s) = \left[\frac{1+\delta_s}{1+\delta_s+\delta_R(\vec{x})}\right]^p$$

(M. White 2016)

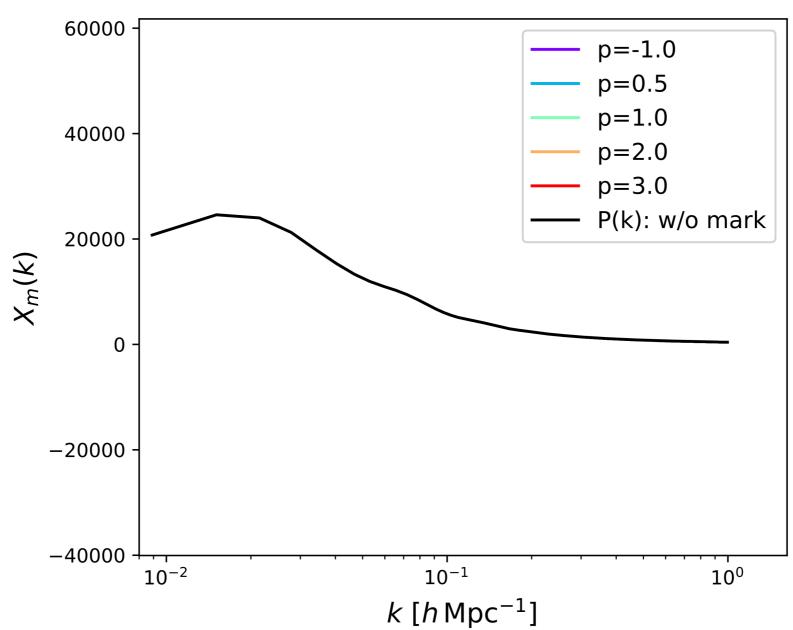
p > 0 up-weight galaxies in **low** density regions p < 0 up-weight galaxies in **high** density regions

MARKED DENSITY FIELD



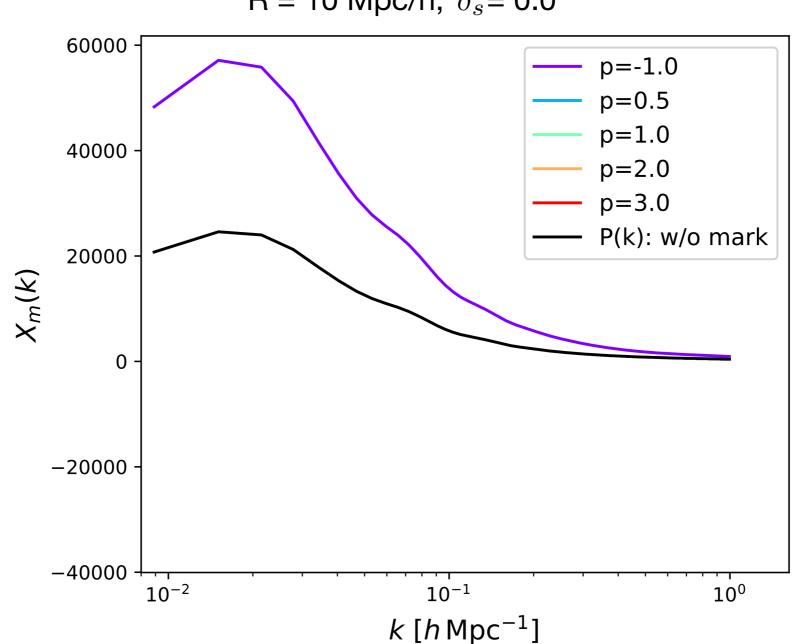
EM et al. 2020

Marked-standard density cross-power spectrum



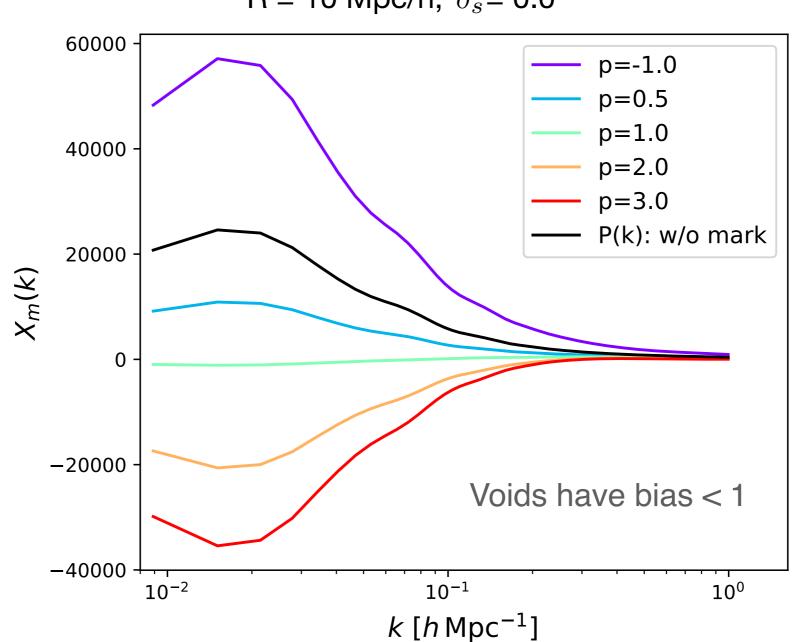
R = 10 Mpc/h, δ_s = 0.0

EM et al. 2020



R = 10 Mpc/h, δ_s = 0.0

EM et al. 2020



R = 10 Mpc/h, δ_s = 0.0

INFORMATION CONTENT in MARKED POWER SPECTRA of the MATTER FIELD

FISHER ANALYSIS

Cosmological parameters:

$$\vec{\theta} = \{\Omega_m, \Omega_b, h, n_s, \sigma_8, M_\nu\}$$

Data vector (observables):

$$\vec{d} = \{P(k_1), P(k_2), ..., P(k_n)\}$$

Error on each parameter:

$$\sigma(\theta_{\alpha}) \leq \sqrt{(F^{-1})_{\alpha\alpha}}$$

Fisher matrix:

$$F_{\alpha,\beta} = \frac{\partial \vec{d}}{\partial \theta_{\alpha}} C^{-1} \frac{\partial \vec{d}}{\partial \theta_{\beta}}$$

QUIJOTE SIMULATIONS

Villaescusa-Navarro, Hanh, EM et al 2019

- https://github.com/franciscovillaescusa/Quijote-simulations
- Set of 43,100 full N-body simulations
- 1 Gpc/h box size, 512³ CDM particles (512³ neutrinos)
- More than 7000 models with different $\Omega_m, \Omega_b, h, \sigma_8, n_s, M_\nu, \omega$
- 1 Pb of publicly available data

QUIJOTE SIMULATIONS

Villaescusa-Navarro, Hanh, EM et al 2019

Boxes to compute the covariances

Name	Ω_m	Ω_b	h	n_s	σ_8	M_{ν} [eV]	realizations	ICs
Fiducial	0.3175	0.049	0.6711	0.9624	0.834	0	15 ,000	2LPT

Table 1. Description of the N-body simulations used in the Fisher analysis.

QUIJOTE SIMULATIONS

Villaescusa-Navarro, Hanh, EM et al 2019

Boxes to compute the numerical derivatives

Name	Ω_m	Ω_b	h	n_s	σ_8	M_{ν}	realizations	ICs
						[eV]		
Fiducial ZA	0.3175	0.049	0.6711	0.9624	0.834	0	500	Zel'dovich
Ω_m^+	0.3275	0.049	0.6711	0.9624	0.834	0	500	2LPT
Ω_m^-	0.3075	0.049	0.6711	0.9624	0.834	0	500	2LPT
Ω_p^{++}	0.3175	0.051	0.6711	0.9624	0.834	0	500	2LPT
$\Omega_p^{}$	0.3175	0.047	0.6711	0.9624	0.834	0	500	2LPT
h^+	0.3175	0.049	0.6911	0.9624	0.834	0	500	2LPT
h^-	0.3175	0.049	0.6511	0.9624	0.834	0	500	2LPT
n_s^+	0.3175	0.049	0.6711	0.9824	0.834	0	500	2LPT
n_s^-	0.3175	0.049	0.6711	0.9424	0.834	0	500	2LPT
σ_8^+	0.3175	0.049	0.6711	0.9624	0.849	0	500	2LPT
σ_8^-	0.3175	0.049	0.6711	0.9624	0.819	0	500	2LPT
M_{ν}^+	0.3175	0.049	0.6711	0.9624	0.834	0.1	500	Zel'dovich
M_{ν}^{++}	0.3175	0.049	0.6711	0.9624	0.834	0.2	500	Zel'dovich
M_{ν}^{+++}	0.3175	0.049	0.6711	0.9624	0.834	0.4	500	Zel'dovich

Table 1. Description of the N-body simulations used in the Fisher analysis.

EM et al. 2020

The Mark

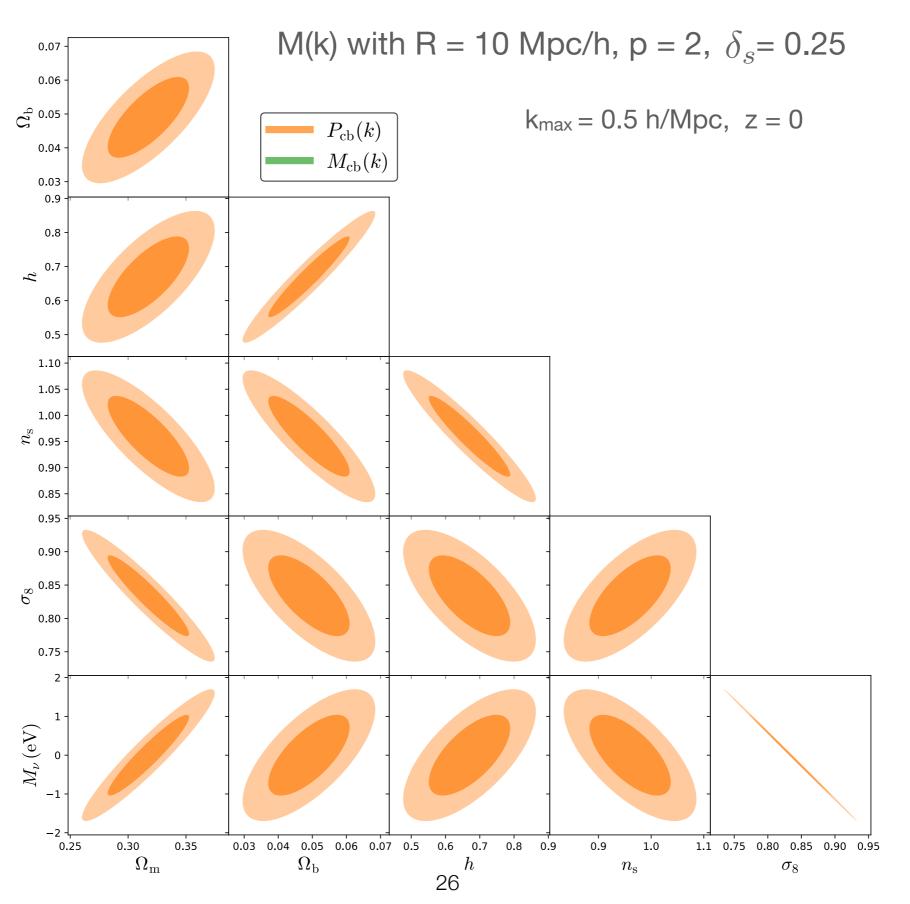
$$m(\vec{x}, \phi = R, p, \delta_s) = \left[\frac{1+\delta_s}{1+\delta_s+\delta_R(\vec{x})}\right]^p$$

Considered values for the mark parameters

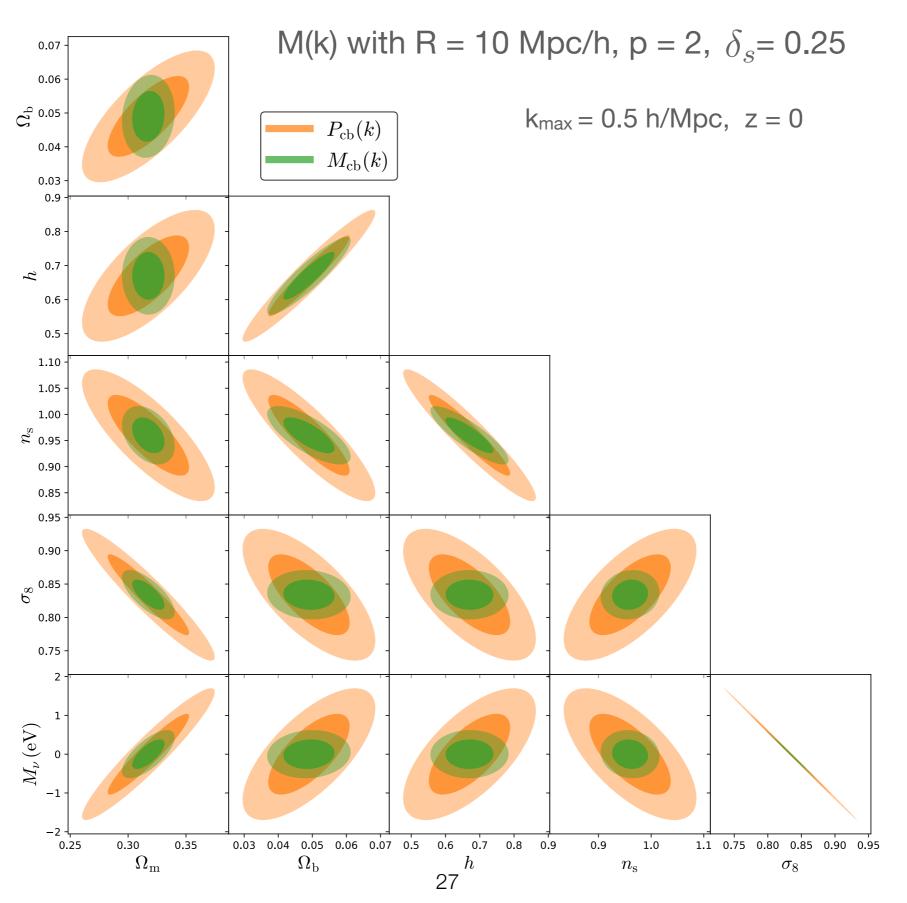
R = [5, 10, 15, 20, 30] Mpc/h
p = [-1, 0.5, 1, 2, 3]
$$\delta_s$$
 = [0, 0.25, 0.5, 0.75, 1]

<u>**125**</u> marked power spectra compute on the matter fields</u> cb (cdm) and m (cdm+neutrinos)

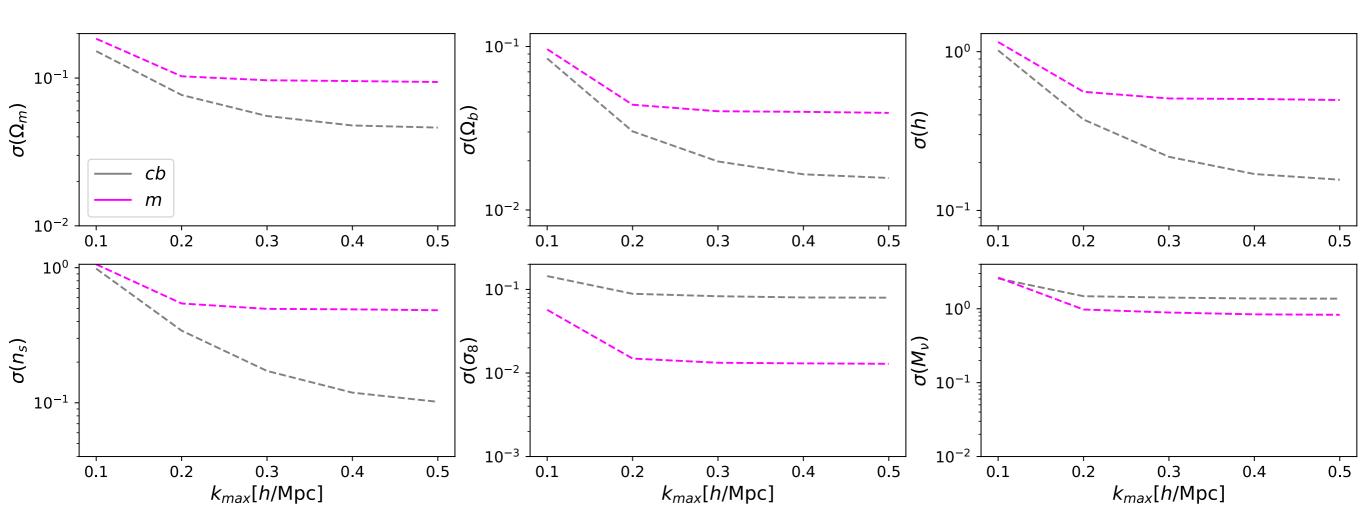
Forecast for statistics of the cold dark matter



Forecast for statistics of the cold dark matter



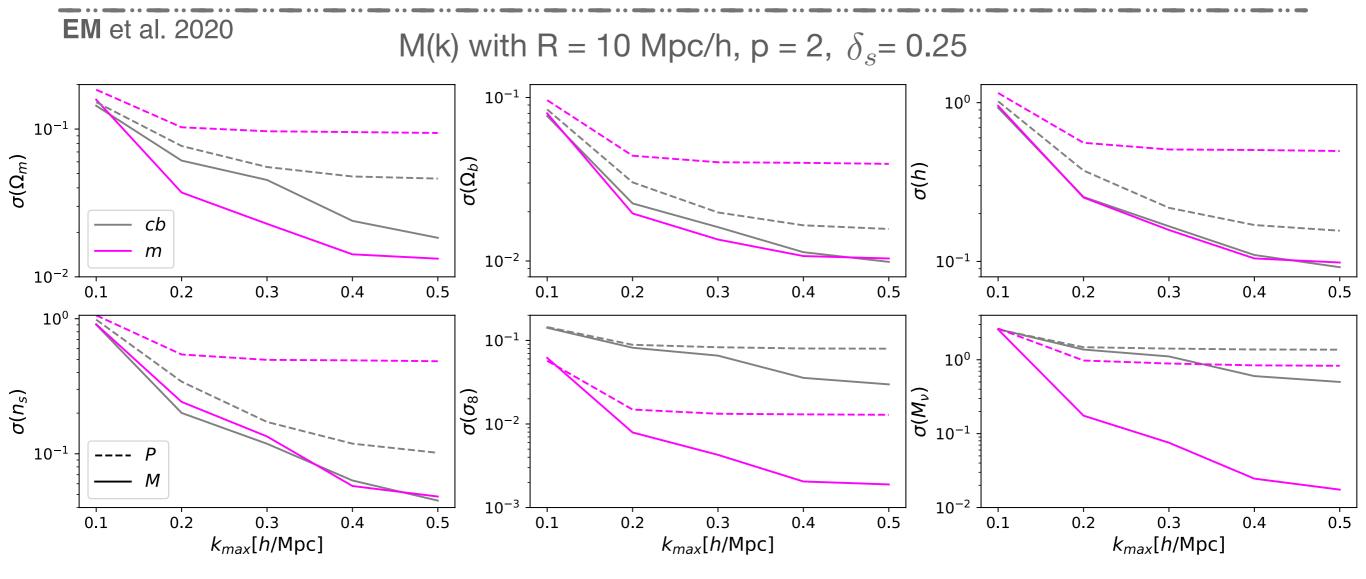
Marginalized errors



Marginalized errors for $k_{max} = 0.5 h/Mpc$

Parameter	P_{cb}	M_{cb}	P_{cb} / M_{cb}	P_m	M_m	P_m / M_m
Ω_m	0.046			0.094		
Ω_b	0.016			0.039		
h	0.16			0.50		
n_s	0.10			0.48		
σ_8	0.080			0.013		
$M_{ u}$	1.4			0.83		

Marginalized errors



Marginalized errors for $k_{max} = 0.5 h/Mpc$

Parameter	P_{cb}	M_{cb}	P_{cb} / M_{cb}	P_m	M_m	P_m / M_m
Ω_m	0.046	0.018	2.5	0.094	0.013	7.2
Ω_b	0.016	0.0099	1.6	0.039	0.010	3.9
h	0.16	0.092	1.7	0.50	0.098	5.1
n_s	0.10	0.045	2.2	0.48	0.048	10
σ_8	0.080	0.030	2.7	0.013	0.0019	6.8
$M_{ u}$	1.4	0.50	2.8	0.83	0.017	48

INFORMATION CONTENT in MARKED POWER SPECTRA of the <u>GALAXY FIELD</u>

Molino galaxy catalogs

Hahn et al. 2021

Built upon the Quijote simulations using Halo Occupation Distribution (HOD) framework from Zheng et al. (2007):

Mean central galaxy occupation

Mean satellite galaxy occupation

$$\langle N_c \rangle = \frac{1}{2} \left[1 - \operatorname{erf} \left(\frac{\log M_h - \log M_{\min}}{\sigma_{\log M}} \right) \right] \qquad \langle N_s \rangle = \langle N_c \rangle \left(\frac{M_h - M_0}{M_1} \right)$$

5 additional parameters to describe the BIAS scheme of GALAXIES

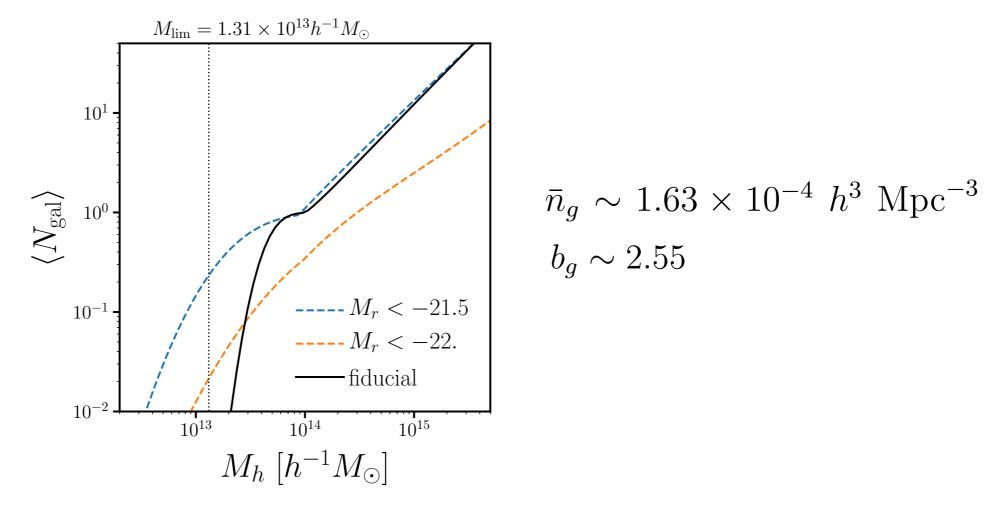
This prescription allow us to compute the **redshift-space** multiples (monopole and quadrupole) of the marked power spectrum of the galaxy field

Halo Occupation Distribution (HOD)

Hahn et al. 2021

Molino mock catalog

Fiducial:

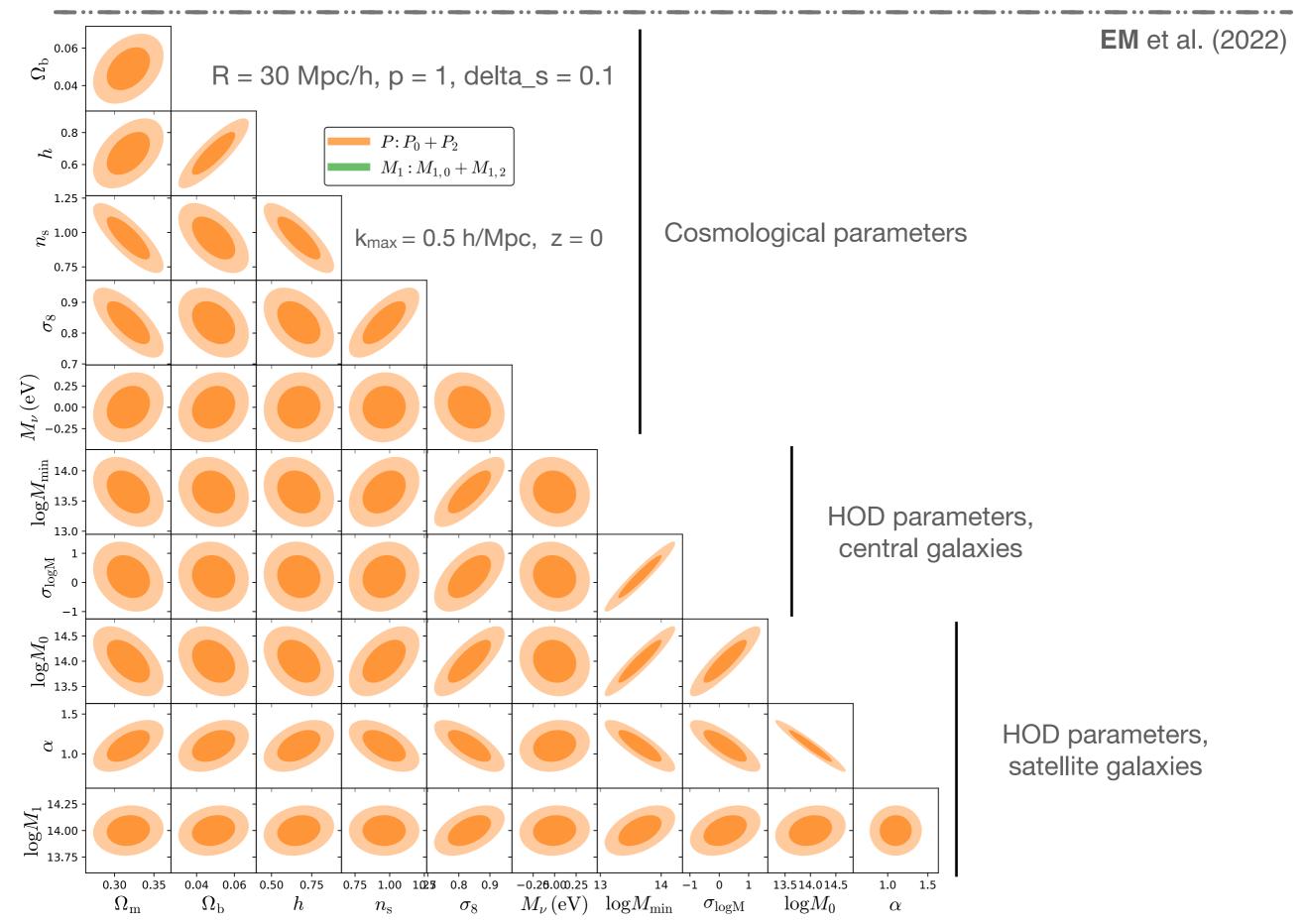


Variation to

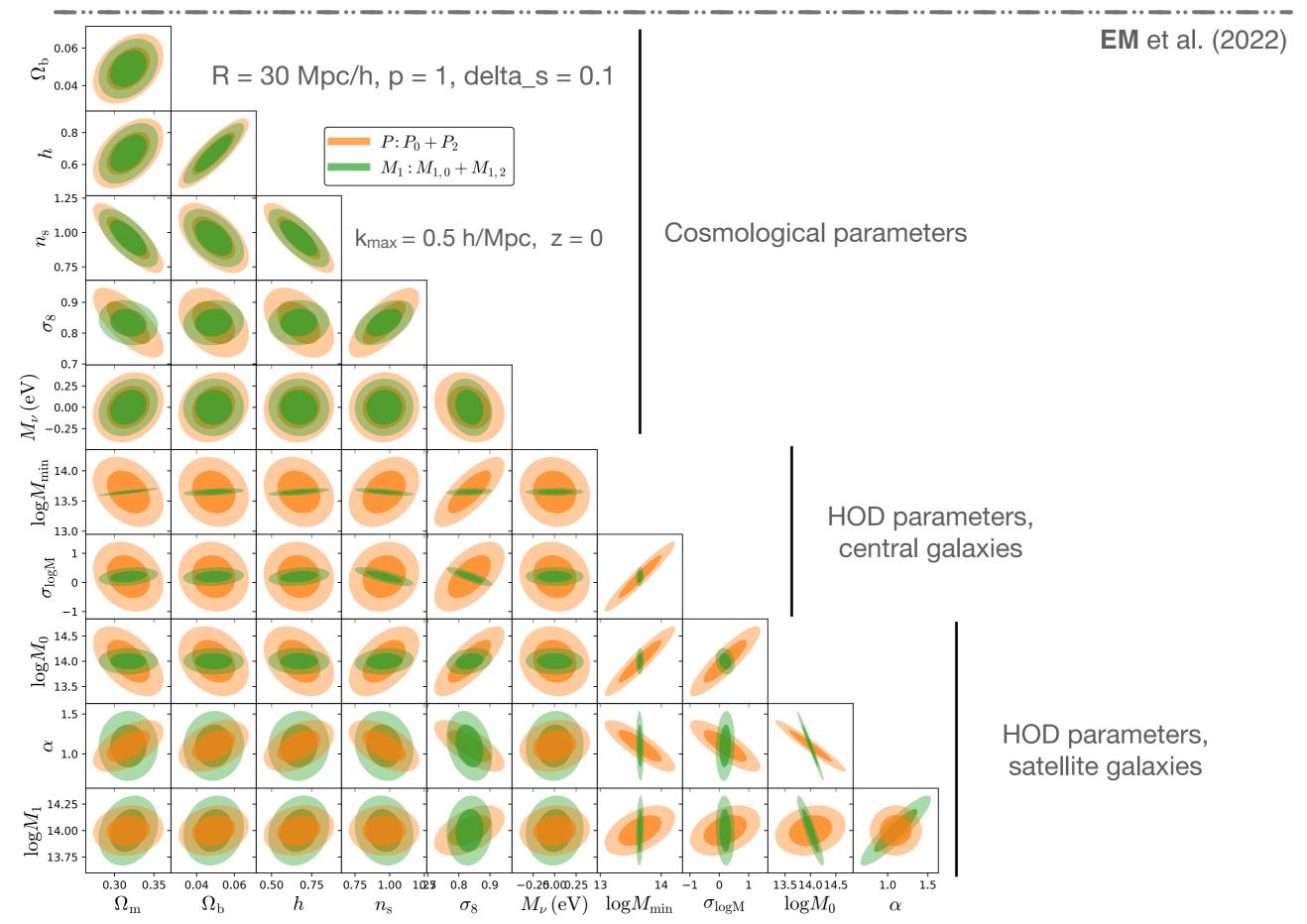
compute

derivatives: $\{\Delta \log M_{\min}, \Delta \sigma_{\log M}, \Delta \log M_0, \Delta \alpha, \Delta \log M_1\} = \{0.05, 0.2, 0.2, 0.2, 0.2\}$

Forecast for the redshift-space Galaxy field



Forecast for the redshift-space Galaxy field



Marginalized errors - galaxy field

EM et al. (2022)

Constraints using monopole and quadrupole of different statistics up to k = 0.5 h/Mpc

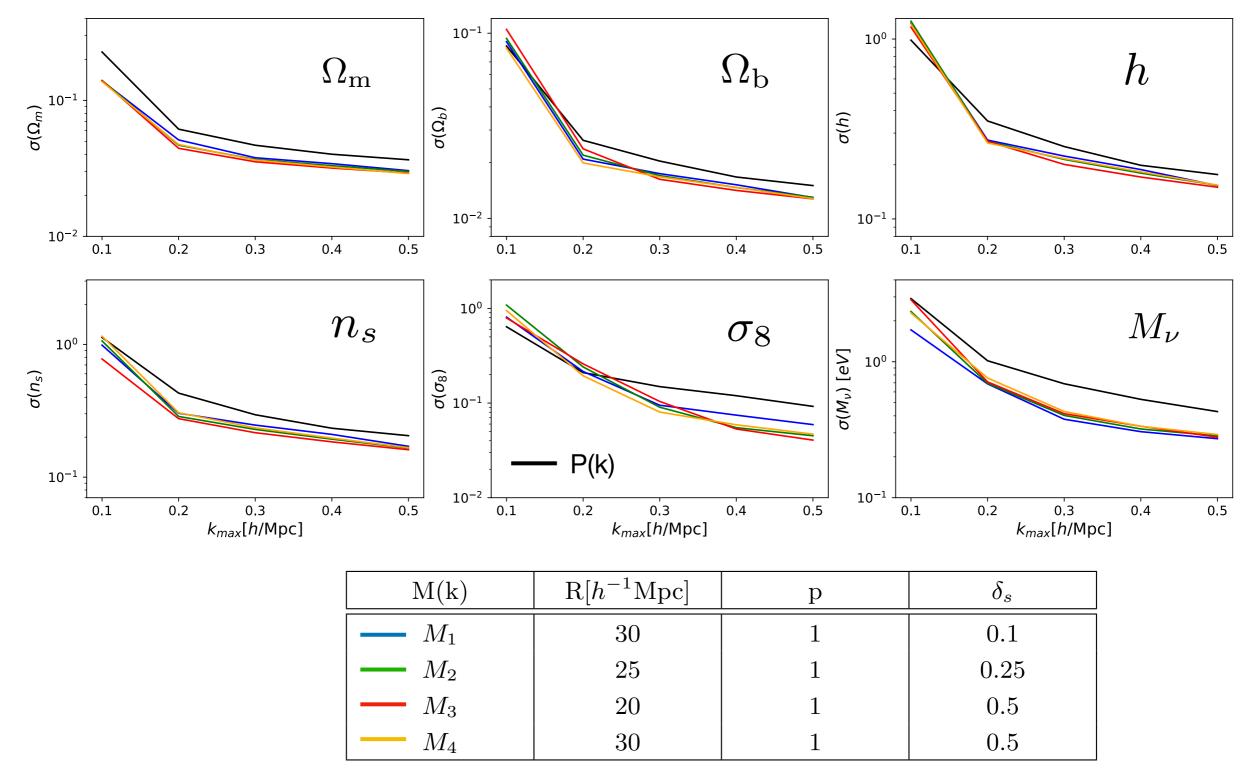


Table 2. Values for the mark parameters (R, p, δ_s) of selected marked power spectra M_1, M_2, M_3 , and M_4 .

Marginalized errors - galaxy field

EM et al. (2022)

The combination of **4 marked power spectra and the standard power spectrum** can largely improve the cosmological constraints coming from the power spectrum alone.

Θ	$P/(P + \Sigma_i M_i)$
	0+2
Ω_m	2.4
Ω_b	2.5
h	2.6
n_s	3.3
σ_8	6.1
M_{ν}	3.0

Future surveys (DESI, EUCLID, Roman) will observe a **LARGER number density** of galaxies that will allow them to **trace the inner part of voids** better than the Molino catalogs. Thus, they will be able to exploit the potential the M(k) even further!

WHY DO MARKED POWE SPECTRA CONTAIN INFORMATION BEYOND THE STANDARD POWER SPECTRUM?

Philcox, EM et al. 2020

The marked density field:

$$\delta_M(\mathbf{x}) \equiv \frac{1}{\bar{m}} m(\mathbf{x}) \left[1 + \delta(\mathbf{x}) \right] - 1$$

with mark:

$$m(\mathbf{x}) = \left(\frac{1+\delta_s}{1+\delta_s+\delta_R(\mathbf{x})}\right)^p \equiv \left(1+\frac{\delta_R(\mathbf{x})}{1+\delta_s}\right)^{-p}$$

Philcox, EM et al. 2020

The marked density field:

$$\delta_M(\mathbf{x}) \equiv \frac{1}{\bar{m}} m(\mathbf{x}) \left[1 + \delta(\mathbf{x}) \right] - 1$$

with mark:

$$m(\mathbf{x}) = \left(\frac{1+\delta_s}{1+\delta_s+\delta_R(\mathbf{x})}\right)^p \equiv \left(1+\frac{\delta_R(\mathbf{x})}{1+\delta_s}\right)^{-p}$$

Taylor expanding the mark:

$$\delta_M(\mathbf{x}) = \frac{1}{\bar{m}} \left[1 + \delta(\mathbf{x}) \right] \left[1 - C_1 \delta_R(\mathbf{x}) + C_2 \delta_R^2(\mathbf{x}) - C_3 \delta_R^3(\mathbf{x}) \right] - 1 + \mathcal{O}\left(\delta^4\right).$$

Philcox, EM et al. 2020

The marked density field:

$$\delta_M(\mathbf{x}) \equiv \frac{1}{\bar{m}} m(\mathbf{x}) \left[1 + \delta(\mathbf{x}) \right] - 1$$

with mark:

$$m(\mathbf{x}) = \left(\frac{1+\delta_s}{1+\delta_s+\delta_R(\mathbf{x})}\right)^p \equiv \left(1+\frac{\delta_R(\mathbf{x})}{1+\delta_s}\right)^{-p}$$

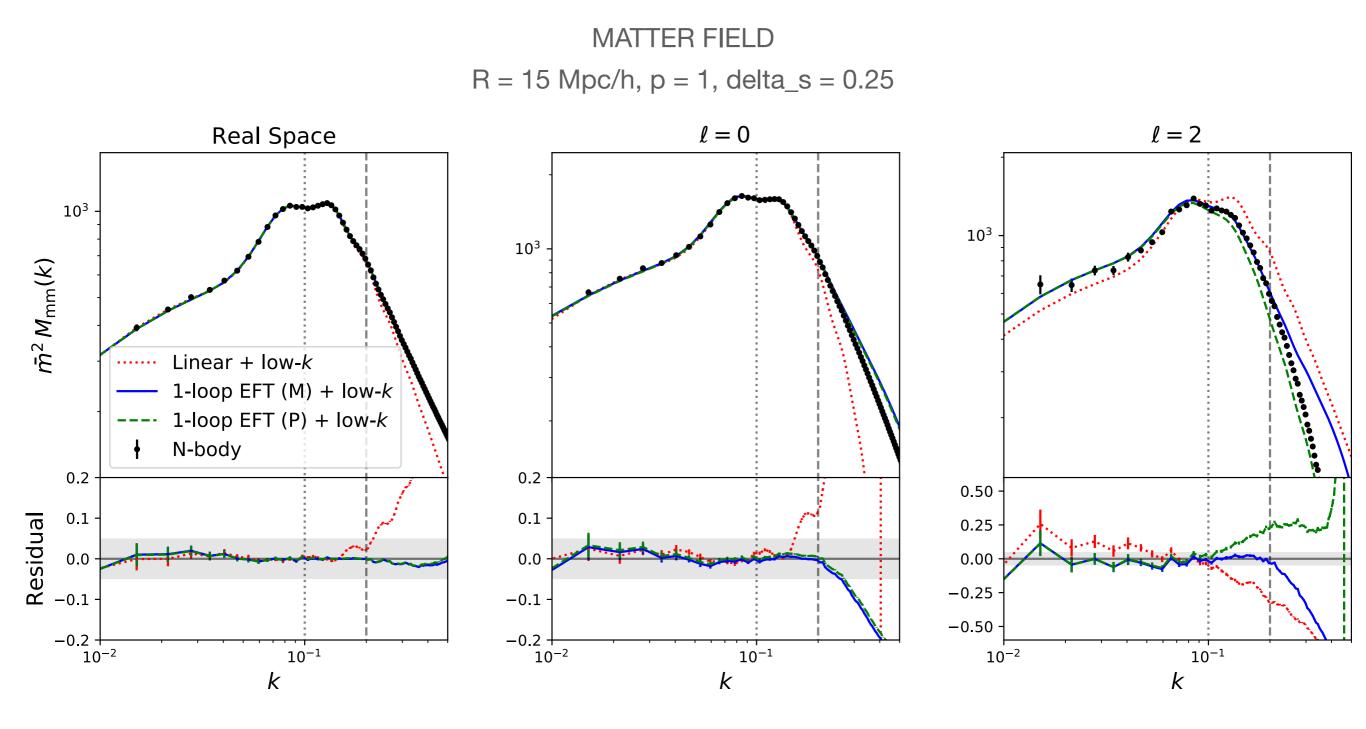
Taylor expanding the mark:

$$\delta_M(\mathbf{x}) = \frac{1}{\bar{m}} \left[1 + \delta(\mathbf{x}) \right] \left[1 - C_1 \delta_R(\mathbf{x}) + C_2 \delta_R^2(\mathbf{x}) - C_3 \delta_R^3(\mathbf{x}) \right] - 1 + \mathcal{O}\left(\delta^4\right).$$

2-point function of the marked field contains higher order statistics of the original field

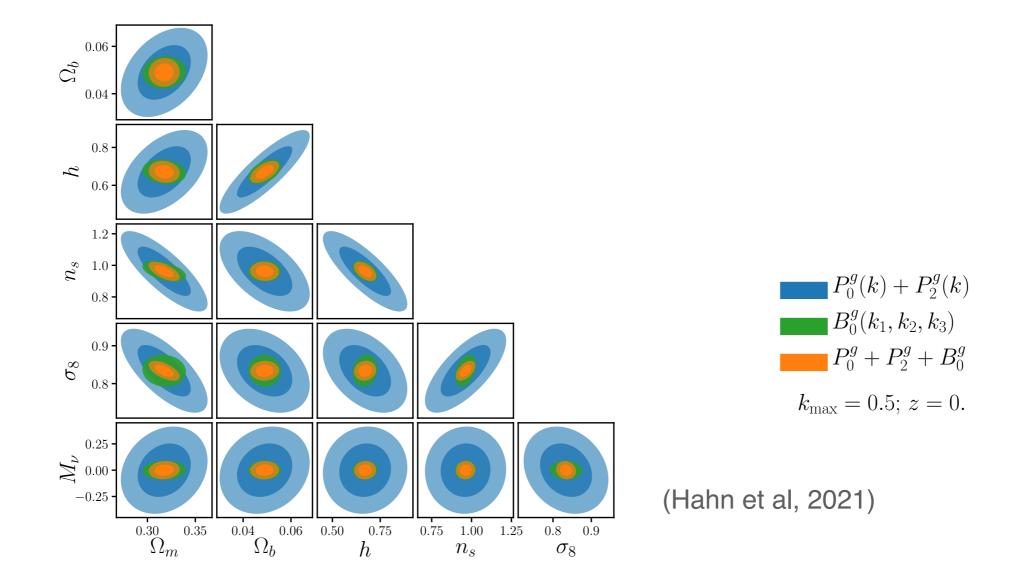
EFT for MARKED POWER SPECTRA

Philcox, EM et al. 2020, Philcox, Aviles, EM et al. 2021



THE INFORMATION CONTENT

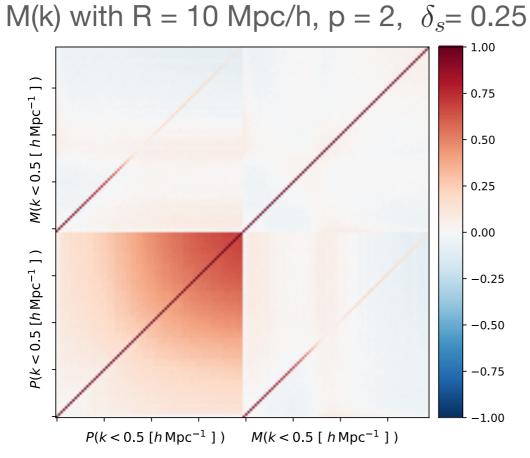
• Marked power spectra contain higher order statistics of the density field



THE INFORMATION CONTENT

• Marked power spectra contain higher order statistics of the density field

 The covariance matrix of some marked power spectra M(k) that up-weight low-density regions is almost diagonal



Other nonlinear transformations, such as the log-transformation, have shown to make the field more Gaussian (Neyrinck et al, 2009, 2010, 2011)

THE INFORMATION CONTENT

• Marked power spectra contain higher order statistics of the density field

• The **covariance** matrix of some marked power spectra M(k) that up-weight low-density regions is almost **diagonal**

 Marked power spectra that up-weight low-density regions incorporate information from voids

CONCLUSIONS

- Results from Fisher analyses: marked power spectra that up-weight low density regions improve parameter constraints beyond the standard power spectrum.
- 6x tighter constraints for sigma8 and 2-3x for the other cosmological parameters when considering combinations of marked and standard power spectra of the galaxy field.
- Upcoming surveys (DESI, EUCLID, Roman) will probe larger volumes and higher galaxy number density, that will allow them to better explore low-density regions and improve the performance of marked power spectra.
- Next step: cosmological analysis with marked power spectra in available surveys. We are building a simulation-based inference framework that will allow us to forward modeling survey systematics and geometry.