

GRAVITATIONAL WAVE ANISTROPIES AS A PROBE OF THE INFLATIONARY PARTICLE CONTENT

In collaboration with E. Dimastrogiovanni, M. Fasiello, P.D. Meerburg, G. Orlando, M. Shiraishi (JCAP03(2021)088, JCAP02(2022)040)

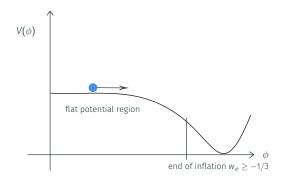
Ameek Malhotra 24 June, 2022

Cosmology from Home 2022

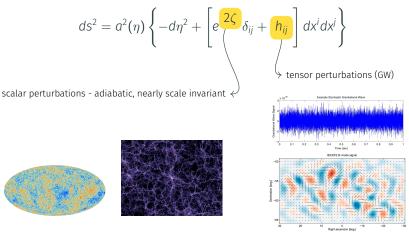
Inflation

Minimal scenario (SFSR)

- + Single scalar field ϕ
- + slowly rolling $\dot{\phi}^2 \ll V$
- $\cdot p_{\phi} \simeq -\rho_{\phi} \implies w_{\phi} \simeq -1$ drives exponential expansion



Inflationary perturbations



[Images: A. Stuver/LIGO and BICEP]

[Images: ESA/Planck and V.Springel]

Gaussian and unpolarised

$$\mathcal{P}_{T}(k) = A_{T} \left(\frac{k}{k_{p}}\right)^{n_{t}} \xrightarrow{n_{T} \simeq -2\epsilon < 0}$$

$$A_{T} \propto H^{2}, \text{ Energy scale of Inflation} \longleftarrow$$

CMB bounds on $r \equiv A_T/A_S$

• *r* < 0.032 (Tristam et al. (2021))

Future sensitivity

• $r \sim 0.001$ (LiteBIRD/CMB-S4)

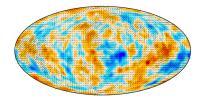
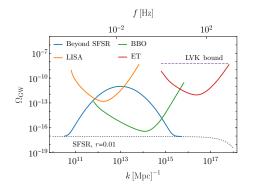


Image credit: ESA/Planck

With present and future planned detectors, interferometric observations of inflationary GW (and its polarisation and nG) requires *small scale enhancement* of the tensor power spectrum.



$$h_{ij}^{\prime\prime} + 2\mathcal{H}h_{ij}^{\prime} + k^2h_{ij} = 16\pi a^2 G\Pi_{ij}^{TT}$$

Sourced by additional fields \leftarrow

[Cook, Sorbo (2012); Barnaby et al. (2012); Biagetti et al. (2014); Fujita et al. (2012); Dimastrogiovanni et al. (2016); Bordin et al. (2018); Iacconi et al. (2020a); Iacconi et al. (2020b) + many more!]

$$h_{ij}^{\prime\prime} + 2\mathcal{H}h_{ij}^{\prime} + k^2h_{ij} + m_{\rm eff}^2h_{ij} = 0$$

Effective 'mass' term from alternative symmetry breaking patterns

[Solid, Super-Solid Inflation - Endlich et al. (2012); Ricciardone, Tasinato (2016); Celoria et al. (2020) + more!]

Assuming the SGWB is detectable, what can we learn from observing primordial non-Gaussianity? Probe the action beyond the free field limit \rightarrow Interactions

Consistency relation for squeezed nG in single field inflation,

$$\lim_{k_{L}\to 0} \langle \zeta_{\vec{k}_{L}} \zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}} \rangle' = P_{\zeta}(k_{L}) P_{\zeta}(k_{2}) \frac{d \ln k^{3} P_{\zeta}(k_{2})}{d \ln k_{3}}$$

[Maldacena (2003)] [Creminelli & Zaladrriaga (2004)]

Single field nG is extremely small...

CRs violated if there are additional fields/alternative symmetry breaking patterns

non-Gaussianity

Signature of additional field with mass *m* and spin *s* in the squeezed bispectrum,

$$\lim_{\substack{k_{L}\to 0}} \langle \zeta_{\vec{k}_{L}} \zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}} \rangle' \propto \frac{1}{k_{L}^{3} k_{2}^{3}} \left(\frac{k_{L}}{k_{2}} \right)^{3/2 - \nu_{s}} \mathcal{P}_{s}(\hat{k}_{L} \cdot \hat{k}_{2})$$

$$\nu_{s} = \sqrt{(s - 1/2)^{2} - m^{2}/H^{2}}, \quad \nu_{s} \in \mathbb{R}$$

[Noumi et al. (2012); Arkani-Hamed, Maldacena (2015); Kehagias, Riotto (2015); Lee et al. (2016)]

non-Gaussianity

Signature of additional field with mass *m* and spin *s* in the squeezed bispectrum,

$$\lim_{\substack{k_{L}\to 0}} \langle \zeta_{\vec{k}_{L}}\zeta_{\vec{k}_{1}}\zeta_{\vec{k}_{2}}\rangle' \propto \frac{1}{k_{L}^{3}k_{2}^{3}} \left(\frac{k_{L}}{k_{2}}\right)^{3/2-\nu_{5}} \mathcal{P}_{5}(\hat{k}_{L}\cdot\hat{k}_{2})$$

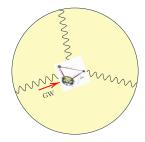
$$(\downarrow)$$
additional angular dependence

Can we learn about primordial tensor interactions via direct detection? Not directly...

GW propagate through inhomegeneities \implies directional phase shift

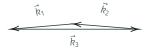
: non-Gaussian information is lost [Bartolo et al. (2019)]

Odd n-point functions of h cannot be reconstructed due to propagation effects [Margalit et al. (2020)]



Workaround : probe ultra-squeezed bispectrum via anisotropies of the energy density which is insensitive to the phase

Another possibility : folded bispectra - see Powell, Tasinato (2020)



$\label{eq:primordial} \mbox{Primordial squeezed non-Gaussianity} \rightarrow \mbox{long wavelength modes} \\ \mbox{modulate power spectrum of short wavelength modes} \\$

[Jeong, Kamionkowski (2012); Dai et al. (2013)]

Modulation of the short mode power spectrum leads to large scale variations in the energy density of GW produced in different regions.

e.g. for $\langle \zeta_{\vec{k}_L} h_{\vec{k}} h_{-\vec{k}} \rangle$ with $k_L \ll k$,

$$\mathcal{P}_{h}^{\mathrm{mod}}(\vec{k},\vec{x}) = \bar{\mathcal{P}}_{h}(k) \left[1 + \int_{k_{L} \ll k} \frac{d^{3}k_{L}}{(2\pi)^{3}} e^{i\vec{k}_{L}\cdot\vec{x}} F_{\mathrm{NL}}(\vec{k},\vec{k}_{L}) \zeta(\vec{k}_{L}) \right]$$

[Adshead, Afshordi, Dimastrogiovanni, Fasiello, Lim, Tasinato (2020)]

$$F_{\rm NL} = \frac{B_{\zeta hh}^{\rm sq}(\vec{k}_{\rm L},\vec{k},-\vec{k})}{\mathcal{P}_{\zeta}(k_{\rm L})\mathcal{P}_{h}(k)} \sim \frac{\text{interaction strength}}{2}$$

Similarly for $\langle h^3 \rangle$ [Dimastrogiovanni, Fasiello, Tasinato (2019)]

Directional intensity flux of the SGWB,

 $\Omega_{\rm GW}(f,\hat{n}) = \bar{\Omega}_{\rm GW}(f)[1 + \delta_{\rm GW}(f,\hat{n})]$

with monopole $\bar{\Omega}_{\rm GW} \propto \bar{\mathcal{P}}_h$ and anisotropy

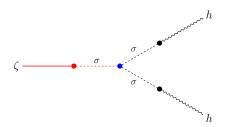
$$|\delta_{\rm GW}| \sim F_{\rm NL} \sqrt{A_S} \sim 10^{-4} F_{\rm NL}$$

Also correlated with the large scale CMB anisotropies $|\Delta T/T| \sim \sqrt{A_S}$ sourced by the same $\zeta_{\vec{k}_L}$!

Anisotropies from STT

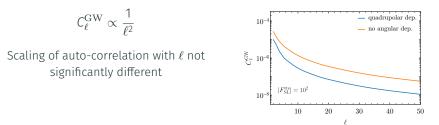
If σ is a spin-2 field, $\langle\zeta_{\vec{k}_L\to 0}h_{\vec{k}}h_{-\vec{k}}\rangle$ has angular dependence s.t.,

$$B_{\zeta hh}^{\rm sq}(\vec{k}_L,\vec{k},-\vec{k}) = \tilde{B}_{\zeta hh}^{\rm sq}(k_L,k) \times \frac{\mathcal{P}_2(\hat{k}_L\cdot\hat{k})}{\mathcal{P}_2(\hat{k}_L\cdot\hat{k})}$$



[Bordin et al. (2018); Iacconi et al. (2020a); Iacconi et al. (2020b)]

How does the angular dependence affect the anisotropies?



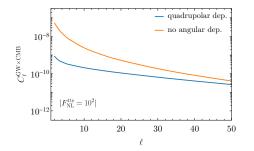
[Dimastrogiovanni, Fasiello, AM, Meerburg, Orlando (2022)]

[AM, Dimastrogiovanni, Fasiello, Shiraishi (2021)]

Anisotropies from STT

How does the angular dependence affect the cross-correlation $GW \times CMB?$

no angular dep. quadrupolar dep.



GW×CMB could also test primordial nature of signal

Scaling with ℓ quite different!

Possible to also see effects of scale dep. non-Gaussianity

$$C_{\ell}^{\mathrm{GW}}(f) \simeq C_{\ell}^{\mathrm{GW}}(f_{\mathrm{ref}}) \times \left(\frac{f_{\mathrm{ref}}}{f}\right)^{3-2\nu_{\mathrm{S}}}$$

Recall,

$$\nu_{\rm s} = \sqrt{({\rm s} - 1/2)^2 - {\rm m}^2/{\rm H}^2}$$

Models + TTT analysis + forecasts for *F*_{NL} + more! [Dimastrogiovanni, Fasiello, AM, Meerburg, Orlando (2022)] [AM, Dimastrogiovanni, Fasiello, Shiraishi (2021)]

- Models with small scale GW can also have large squeezed nG
- Squeezed limit nG knows about **mass, spin** of additional fields during inflation
- Tensor nG can be detected at small scales via SGWB anisotropies
- + Possible to indirectly probe both $\langle\zeta\,h\,h\rangle$ and $\langle h\,h\,h\rangle$ for large $\Omega_{\rm GW}$ and $|F_{\rm NL}|\gg 1$

Thank you!