

A Model-Independent Test on Variations in the Peak Luminosity of Type Ia Supernovae.

Darshan Kumar Dept. of Physics and Astrophysics, University of Delhi, India

Cosmology from Home July 2022 Work Based on JCAP 01 (2022) 053 [arXiv:2107.04784]

In Collaboration with: Akshay Rana, Deepak Jain, Shobhit Mahajan, Amitabha Mukherjee, & R. F. L. Holanda

Motivation:

Type Ia SNa: Standard Candle: direct evidence for the accelerating universe

 \rightarrow Assumption: Intrinsic Luminosity (or M_B) independent to redshift

Intrinsic Luminosity Depends:

♦ Host morphology
♦ Host mass
♦ Local star formation rate

AIM => Evolution of Luminosity with time or redshift!

Contents:

- Basics of Cosmology
- Observations

Basics of Cosmology:

Cosmological Principle: Spatially Homogeneous and Isotropic at large scale.

The Friedmann-Lemaître-Robertson-Walker metric:

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right]$$

where, a(t) = Scale factor, c = 1, k = -1, 0, +1 for open, flat, close universe.

Einstein Equations:

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

 $R_{\mu\nu} =$ Ricci tensor, R = Ricci scalar, $g_{\mu\nu} =$ Metric tensor & $\Lambda =$ Cosmological constant.

Cosmology Overview:

Energy Momentum Tensor:

$$T^{\mu\nu} = (P + \rho) \, u^{\mu} u^{\nu} + P g^{\mu\nu}$$

 u^{μ} is 4-velocity, P and ρ are pressure and energy density of perfect fluid.

Friedmann Equations:

$$3\frac{\dot{a}^2+k}{a^2} - \Lambda = 8\pi G\rho$$
$$2\frac{\ddot{a}}{a} + \frac{\dot{a}^2+k}{a^2} - \Lambda = -8\pi GP$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda}{3}$$
ow down expansion Speed up expansion

Basics of Cosmology:

Hubble Parameter:

$$H(z) \equiv H_0 E(z) = H_0 \sqrt{\Omega_{m0}(1+z)^3 + \Omega_{k0}(1+z)^2 + \Omega_{\Lambda 0}}$$
$$H_0 = \frac{\dot{a}(t_0)}{a(t_0)} = \text{Hubble Constant}$$

Cosmological Redshift:

$$z \equiv \frac{\lambda_0 - \lambda_e}{\lambda_e}$$
 $\frac{a(t_0)}{a(t_e)} \equiv z + 1$

Cosmological Density Parameters:

$$\Omega_{m0} = \frac{8\pi G\rho_m}{3H_0^2}; \quad \Omega_{k0} = \frac{-k}{H_0^2 a_0^2}; \quad \Omega_{\Lambda 0} = \frac{\Lambda}{3H_0^2}$$
$$\Omega_{m0} + \Omega_{k0} + \Omega_{\Lambda 0} = 1$$

Distances in Cosmology:

Comoving Distance:

$$d_{co} = \frac{d_p(z)}{\left(\frac{a(t)}{a(t_0)}\right)} = (1+z)d_p(z)$$

Angular Diameter Distance:

Standard Ruler

$$d_A(z) = \frac{d_{co}}{1+z}$$

Luminosity Distance:

Standard Candle

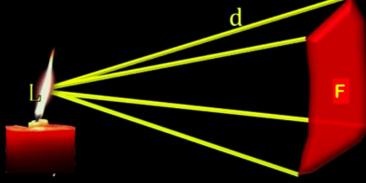
$$d_L(z) = d_{co}(1+z)$$

Distances in Cosmology:

$$d_{A}(z) = \frac{d_{co}}{(1+z)} = \frac{d_{L}(z)}{(1+z)^{2}} = \begin{cases} \frac{1}{(1+z)H_{0}\sqrt{\Omega_{k0}}} \sinh\left(\sqrt{\Omega_{k0}}\int_{0}^{z}\frac{dz'}{E(z')}\right) & \text{for } \Omega_{k0} > 0\\ \frac{1}{(1+z)H_{0}}\int_{0}^{z}\frac{dz'}{E(z')} & \text{for } \Omega_{k0} = 0\\ \frac{1}{(1+z)H_{0}\sqrt{-\Omega_{k0}}} \sin\left(\sqrt{-\Omega_{k0}}\int_{0}^{z}\frac{dz'}{E(z')}\right) & \text{for } \Omega_{k0} < 0 \end{cases}$$

Standard Candle: Type la Supernova




$$F = \frac{L}{4\pi d_L^2}$$

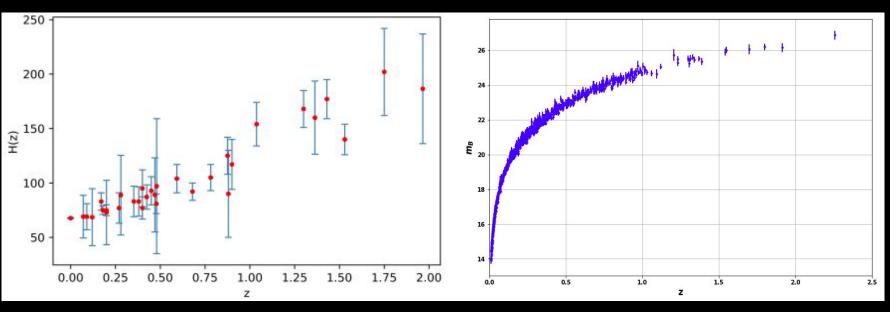
Luminosity Distance:

$$d_L(z; M_B) = 10^{(m_B - M_B - 25)/5} [Mpc$$

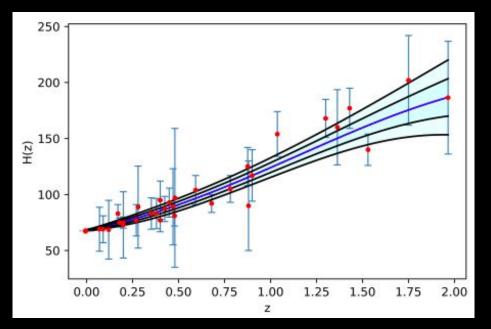
CDDR:
$$d_A = rac{d_L}{(1+z)}$$

9

Observable Datasets:


Hubble Parameter Dataset (CC):

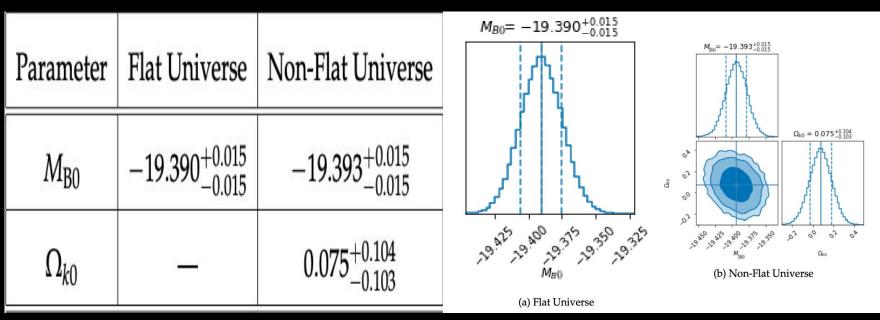
10


31 data points of H(z) with redshifts in the range 0 < z < 2

1048 data points of m(z) with redshifts in the range 0 < z < 2

Statistical Tools:

Dataset Reconstruction [GP]: OParameter Estimation [EMCEE]:



$$\chi^2 = \Delta m^T \cdot C^{-1} \cdot \Delta m$$
$$\Delta m = m_B^{\text{obs}}(z_i) - m_B^{\text{th}}(z_i; \eta, M_B, \Omega_{k0})$$

 $C = D_{\rm stat} + C_{\rm sys}$

arXiv:2107.04784

\bigcirc P1. $M_B=M_{B0}$

arXiv:2107.04784

\bigcirc P2. $M_B = M_{B0} + M_{B1}z$

Parameter	Flat Universe	Non-Flat Universe	$M_{\rm B0} = -19.391^{+0.016}_{-0.016}$	M ₁₀₀ - 19.376 ^{+0.018}
M _{B0}	$-19.391\substack{+0.016\\-0.016}$	$-19.376\substack{+0.018\\-0.019}$	$M_{B1} = 0.005^{+0.021}_{-0.021}$	M _B = -0.152 ^{+0.001}
M _{B1}	$0.005\substack{+0.021\\-0.021}$	$-0.152\substack{+0.089\\-0.091}$	er e	
Ω_{k0}	_	$0.823\substack{+0.471 \\ -0.450}$	(a) Flat Universe	(b) Non-Flat Universe

arXiv:2107.04784

P3.
$$M_B = M_{B0} + M_{B1} \frac{z}{1+z}$$

Parameter	Flat Universe	Non-Flat Universe	$M_{\rm B0} = -19.390^{+0.017}_{-0.017}$		M ₁₀ =-19.380 ^{+0.08}		
M _{B0}	$-19.390\substack{+0.017\\-0.017}$	$-19.380\substack{+0.018\\-0.018}$		$M_{\rm B1} = 0.001^{+0.038}_{-0.040}$		M ₈₁ = -0.111 ^{+0.082}	
$M_{\rm B1}$	$0.001\substack{+0.038\\-0.040}$	$-0.111\substack{+0.082\\-0.083}$	M ^M B ^N		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\Omega_{k0} = 0.343^{+0.214}_{-0.225}$
Ω_{k0}		$0.343\substack{+0.214\\-0.225}$.vo -	MBI	d 0 ⁴ 0 ⁹ 10 ⁸ 10 ⁶ 10 ⁶ 10 ⁷ 10 ⁷ 10 ⁷ 0 ⁴	р ³⁹ р ³⁵ о ⁶ о ⁵⁵ М _{ВI}	Δ.

arXiv:2107.04784

\bigcirc P4. $M_B = M_{B0} + M_{B1} \ln z$

Parameter	Flat Universe	Non-Flat Universe	$M_{\rm B0} = -19.391^{+0.017}_{-0.016}$		M _{b0} = -19.380 ^{+0.017}		
$M_{ m B0}$	$-19.391\substack{+0.017\\-0.016}$	$-19.380\substack{+0.017\\-0.018}$		$M_{\rm Bl} = 0.005^{+0.030}_{-0.029}$	o th o th	$M_{\rm BI}^{\rm i} = -0.110^{+0.079}_{-0.078}$	
M_{B1}	$0.005\substack{+0.030\\-0.029}$	$-0.110\substack{+0.079\\-0.078}$	Solo Z		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		$\Omega_{t0} = 0.442^{+0.287}_{-0.287}$
Ω_{k0}		$0.442\substack{+0.282\\-0.287}$	1.9 ¹⁶ 1.9 ¹⁶ 1.9 ³⁹ 1.9 ³⁶	000 000 000 012	α ο ⁵ μ ⁵	рз ³ д ¹⁵ о ³ о ⁵	A. C.

Conclusions:

In the flat and non-flat universe cases, all parametrizations support no evolution of absolute magnitude with redshift with 2σ confidence level.

Solute magnitude MB, the best fit value of $\Omega k0$ suggests a flat universe at 2σ confidence level.

However, in the parametrizations P2, P3 and P4, the best fit value of Ωk0 show mild preference for a non-flat universe.

From the 1D and 2D contours of all four parametrizations of MB(z) for non-flat case, we observed a negative correlation between the absolute magnitude and cosmic curvature which should be analysed further.

