Cosmological Constraints with HI intensity Mapping using Interferometer Mode

> Mponeng Kopana, PhD Candidate Supervisors: Prof Roy Maartens & Dr Sheean Jolicoeur

Cosmology from Home Conference, July 2022

June 24, 2022

Second Section

Third Section

Preface

- > We probe the cosmological constraints possible from upcoming radio-telescopes.
- 21cm intensity maps large-scale fluctuations in less time and still obtaining cosmological information.
- The surveys help to measure growth rate of structure using redshift space distortion (RSD).

$$f(z) = -rac{d\ln\delta_m}{d\ln(1+z)} pprox \Omega_m(z)^\gamma, \ \gamma = 0.55$$

- RSD is the distortion of the real-space distribution in red-shift space and the distortions on large scales squashed in the line of sight direction: kaiser effect
- ► For RSD on smaller scales we add effective term called Finger of God effect.

Second Section

Third Section

Fourth Section

21cm Intensity mapping

/illaescusa-Navarro et al.

- HI intensity experiments are low resolution maps of the Universe.
- No need to resolve individual galaxies to create a map.
- Instead, we map the fluctuations in the HI

brightness temperature, like CMB using $\Delta T_{
m CMB} = \Delta T_{
m CMB}(heta, \phi, z = 1100)$ $\Delta T_{
m HI} = \Delta T_{
m HI}(heta, \phi, z)$

► HI in galaxies emits a spectral line with the rest frame $\nu_{21} = 1420MHz$. Then $\lambda_{21cm} = 21cm(1 + z)$

R Nave

Second Section

Third Section

Fourth Section

Information from HI power spectra

- We used HI fluctuations to probe the power spectrum of matter fluctuations
- The Fourier transform:

 $P_{\mathrm{HI}}(k,z) = \overline{T}_{\mathrm{HI}}^2(z) b_{\mathrm{HI}}^2(z) P_m(k,z) + P_{shot}$

Second Section

Third Section

Fourth Section

Redshift Space Distortions

The distortion of the real-space distribution in red-shift space

- Kaiser RSD adds an additional term $f\mu^2$ On smaller scales the FoG damps power $\frac{P_{\rm HI}(z,k,\mu)}{P_m(z,k)} = \underbrace{D_{\rm FOG}(k,\mu)}_{\rm Small \, scale} T_{\rm HI}^2(z) \left[b(z) + f(z)\mu^2 \right]^2$
 - On small scales fluctuations are stretching along the line of sight

Second Section

Third Section

Fourth Section

Survey specifications

	HIRAX	PUMA
red-shift range	0.8 - 2.5	0.3 - 6.0
$D_d[m]$	6	6
t _{tot} [10 ³ hr]	17.5	40
$N_{ m d}$	256/1024	5000/32000
$T_a[K]$	50	95
f _{sky}	0.36	0.50
η_a	0.7	0.7

The HI surveys using interferometer mode (IF)

Beam of telescope:

$$heta_b = 1.22 rac{\lambda_{21}(1+z)}{D_d}$$

Third Section 00000

Practical Challenges

- The complications and suggested mitigation for a successful IF survey
- Loss of small radial wave-number

$$k_{\parallel} < k_{\parallel, fg} pprox 0.01 h {
m Mpc}^{-1}$$

Loss of foreground wedge

 $k_{\parallel} < A_{wedge} k_{\perp} \ A_{wedge} = r \mathcal{H} \sin[0.61 heta_b]$

Third Section

Fourth Section

Fisher matrix forecast

Forecast the precision of measurement on cosmological paramaters

Assumes Gaussian errors on each observable, characterized by variance

$$\operatorname{var}[P_{\mathrm{HI}}(z_i,k,\mu)] \propto \left[P_{\mathrm{HI}}(z_i,k,\mu) + P_{\mathrm{noise}} \right]^2$$

Cosmological model + Instrumental noise

The Fisher matrix in redshift bin centred at z_i:

$$_{\alpha\beta}(z_i) = \sum_{\mu=-1}^{+1} \sum_{k_{\min}(z)}^{k_{\max}(z)} \frac{1}{\operatorname{var}[P_{\mathrm{HI}}(z_i, k, \mu)]} \frac{\partial P_{\mathrm{HI}}(z_i, k, \mu)}{\partial \theta_{\alpha}} \frac{\partial P_{\mathrm{HI}}(z_i, k, \mu)}{\partial \theta_{\beta}}, \quad \overbrace{F_{\alpha\beta}(\leq z_n) = \sum_{i=1}^{n} F_{\alpha\beta}(z_i)}^{\text{Total Fisher}}$$

The step-size of each red-shift bin, Δz = 0.1
 k_{min} depends on the suvery where k_{max} is restricted to

$$k_{\rm max}(z) = 0.2(1+z)^{2/(2+n_s)} h \,{\rm Mpc}^{-1}$$

Second Section

Third Section

Fourth Section

Marginalizing over parameters

We invert the total Fisher to obtain the covariance matrix

$$C_{\alpha,\beta} = (F^{-1})_{\alpha,\beta}$$

Marginalized errors are the diagonal elements of the matrix :

 $\sigma_{\alpha} \equiv (F^{-1})_{\alpha}$

Free Parameters

$$\theta_{\alpha} = \{B_0 = (\bar{T}_{\mathrm{HI}}b_{\mathrm{HI}}\sigma_8)_0, \ F_0 = (\bar{T}_{\mathrm{HI}}f\sigma_8)_0, \ \sigma_{\mathrm{HI0}}, \ \gamma, \ h, \ n_s, \ \Omega_{m,0}\}$$

We use simple 1-parameter models for $(\overline{T}_{HI}b_{HI}\sigma_8)_0$, $(\overline{T}_{HI}f\sigma_8)_0$ and the FoG factor σ_{80}

Second Secti

Third Section

Fourth Section

Results

Second Section

Third Section

Fourth Section

Results

PUMA—32k delivers better precision than HIRAX

PUMA-32k	$(\sigma_{ heta_i}/ heta_i)$ %
γ	0.4%
ns	0.008%
h	0.2%
Ω_{m0}	0.01%
Bo	0.005%
Fo	0.04%
σ_{HIO}	0.1%

 We did not include the information from the distance which involves Alcock-Paczynski effect Lopez-Corredoira(2013)

Third Section

Future Work

- > Extend the constraints to include other cosmological parameters
- To do the forecasts for cosmological measurements from cross-correlating 21cm intensity maps with galaxy number counts
 - HIRAX and Euclid (European Space Agency satellite)
 - PUMA and DESI (Dark Energy Survey), Euclid (in different redshift ranges)

Thank you!!

