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• The Universe is expanding, 
and its expansion is 
accelerating.
(Riess et. al. 1998, Perlmutter et. al. 
1999) 

• The Cosmological Constant 
can model this expansion,
R!" −

#
$
g!" + Λ g!" = 𝜅T!" .

• But Λ receives quantum 
corrections from the vacuum
Λ = Λ% + ρ& .

THE COSMOLOGICAL 
CONSTANT PROBLEM
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• The corrections are very 
large ~ 60 orders of 
magnitude larger than 
observations imply.

• Crucially, vacuum energy 
suffers from issues of fine-
tuning due to sensitivity from 
unknown high-energy physics.

• This is the Cosmological 
Constant Problem.

• What is the simplest way to 
tackle the problem using a 
scalar field?

THE COSMOLOGICAL 
CONSTANT PROBLEM
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V0

• Consider a scalar field potential V φ with a 
minimum at V'.

• Solve the Cosmological Constant Problem 
with a scalar field that relaxes at V0 and cancels 
ρ& to the required degree.

• Weinberg’s No-Go theorem blocks such 
solutions as V0 will also need fine-tuning.

• But there’s a loop-hole:

Relax Weinberg’s assumptions and dynamically
cancel the large vacuum energy.

• How much freedom does a single scalar field 
grant us? 

WEINBERG’S NO-GO 
THEOREM
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• Horndeski theory is the most general 
scalar-tensor theory of gravity in 4 
dimensions that is stable.

• First proposed in 1974, it was revived 
in 2012 to find self-tuning solutions to 
solve the Cosmological Constant 
Problem (Charmousis et. al. 2012).

• A complicated gravitational action, 
with four Lagrangian density terms

𝑆 =-
()$

*

.𝑑+𝑥 −𝑔 ℒ(
Gregory Horndeski and his artwork
www.horndeskicontemporary.com

HORNDESKI THEORY
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HORNDESKI THEORY

ℒ = 𝐺! 𝜙, 𝑋 + 𝐺" 𝜙, 𝑋 ☐𝜙 + 𝐺# 𝜙, 𝑋 𝑅

+ 𝐺$ 𝜙, 𝑋 𝐺%&∇%∇&𝜙

+ 2𝐺#'[(☐𝜙)!− ∇%∇&𝜙 ∇%∇(𝜙 ]

+
1
3𝐺$' 𝜙, 𝑋 1

2

(☐𝜙)"−3 𝛻%𝛻(𝜙 𝛻%𝛻(𝜙 ☐𝜙

+ 2 𝛻%𝛻(𝜙 𝛻)𝛻(𝜙 𝛻)∇%𝜙 .

• The full Horndeski modifies the speed of 
gravitational waves, and generally tunes 
away any matter present. 

where 𝑋 = "̇!

#
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• The full Horndeski modifies the speed of 
gravitational waves, and generally tunes 
away any matter present.

• Gravitational wave speed measurements 
constrain Horndeski to 3 terms. 
(Lombriser & Taylor 2016, Baker et. al. 2017, Ezquiaga & 
Zumalacárregui 2017)

where 𝑋 = "̇!

#
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HORNDESKI THEORY
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+ 2 𝛻%𝛻(𝜙 𝛻)𝛻(𝜙 𝛻)∇%𝜙 .

• The full Horndeski modifies the speed of 
gravitational waves, and generally tunes 
away any matter present.

• Gravitational wave speed measurements 
constrain Horndeski to 3 terms. 
(Lombriser & Taylor 2016, Baker et. al. 2017, Ezquiaga & 
Zumalacárregui 2017)

• Further pressures on 𝐺# (Lombriser & Taylor 
2016, Lombriser & Lima 2017, Noller & Nicola 2019) 
leave behind Kinetic Gravity Braiding as 
the surviving subclass of Horndeski theory.

where 𝑋 = "̇!

#
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THE MINIMAL MODEL

𝐺$ 𝜙, 𝑋 = 𝑘(𝑋) − 𝑉(𝜙)

𝐺, 𝜙, 𝑋 ∝ 2𝑋

Friedmann 3𝑀*+
! 𝐻! = 𝜌, + 𝜌- + 𝜌. , 

Acceleration − 3𝑀*+
! 𝐻! + 2𝑀*+

! 𝐻̇ = −𝜌, + 𝑝. ,

Scalar field 𝜙̈ + 3𝐻𝜙̇ 𝐻 − 𝐻/0 + 𝐻̇𝜙̇ + 𝑉1 𝜙 = 0,

where 𝐻 = 𝐻"# is the Hubble attractor.
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THE MINIMAL MODEL
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THE MINIMAL MODEL

Ø A non-canonical kinetic term 𝑘(𝑋) ∝ −𝐻/0𝑋
introduces the Hubble attractor 𝐻/0 in the 
equations.

Ø A linear 𝜙 potential removes vacuum energy.

Ø Simply 𝜙̇, introduces 𝐻-dependence in 𝜌. ∝
2
!
𝜙̇! 2𝐻 − 𝐻/0 + 𝑉(𝜙) .

Ø Shift-symmetry 𝜙 → 𝜙 + 𝑐 of the Lagrangian 
density aids in controlling quantum corrections 
(Padilla 2015, Appleby & Linder 2018).
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where 𝐻 = 𝐻"# is the de Sitter Hubble attractor.
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ATTRACTOR 
BEHAVIOUR
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MODEL MECHANISM

Ø The total energy 3𝑀*+
! 𝐻! follows 

𝜌- ∝ 𝑡3! at early times, despite the 
presence of 𝜌, .

Ø The potential energy removes 𝜌,
while the field is in slow-roll.

Ø𝐻 asymptotes to the de Sitter 
attractor at the end of matter 
domination.

𝜌$

𝜌%

3𝑀&'
( 𝐻(

3𝑀&'
( 𝐻"#(
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MODEL MECHANISM

Ø The potential provides a driving force 
to 𝐾 at late times, which is triggered 
near the attractor. 

Ø Attractor solution maintained by the 
scalar field dynamically driving 
effective dark energy |𝜌, + 𝜌.| to 
attractor value 𝜌456 = 3𝑀*+

! 𝐻/0! .

Ø We also find that the attractor is 
stable under a phase transition in the 
value of 𝜌, .

𝐾

|𝜌$ + 𝜌)|

𝜌$

𝜌%

3𝑀&'
( 𝐻(

3𝑀&'
( 𝐻"#(
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DISCUSSION

• The mechanism is novel (Khan & Taylor 2022, Appleby & Bernardo 2022) and shows the 

existence of a wider class of self-tuning models than previously assumed.

• The model can be scaled such that 𝜌-./ = 𝜌0/(., giving a very light scalar field of mass 

~ 101,, eV corresponding to a low-energy particle physics scale.

• The model may be a lower-energy manifestation of a high-energy theory.
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SUMMARY

• We show there exists a simple model and mechanism to remove a large vacuum 

energy density and give acceleration at a much lower energy scale.

• The model is theoretically viable and passes gravitational wave speed constraints.

• The field preserves a matter dominated era and is stable under a vacuum energy 

phase transition.
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