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Motivation: Etherington Distance Duality

D;(z) = Da(2)(1 + 2)?
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Motivation: Etherington Distance Duality

D;(z) = Da(2)(1 + 2)?
Dy (z): luminosity distance
Da(z): angular diameter distance

Universal for metric spacetimes!

= Important observational quantity to test for new physics
see [Basset & Kunz (04)] and [Schuller & Werner (17)] for instance

= Focus on different geometries
= Similar phenomenology for classical astrophysical effects? —
Intrinsic Alignment!
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Structure

» Surface brightness fluctuations in linear alignment model
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Structure
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Surface brightness fluctuations in linear alignment model
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Basic ideas about area-metric geometry
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Surface brightness fluctuations in area-metric lensing
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Numerical comparison of the spectra
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Intrinsic Alignment

General Idea: Local alignment of galaxies in the tidal fields of the

large scale structure — linear model for elliptical galaxies
(See [Hirata et. al. (07), Hirata & Seljak (10)] for instance)

Important systematic error in weak lensing
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Intrinsic Alignment

General Idea: Local alignment of galaxies in the tidal fields of the

large scale structure — linear model for elliptical galaxies
(See [Hirata et. al. (07), Hirata & Seljak (10)] for instance)

Important systematic error in weak lensing

Galaxy (aligned)

‘ Tidal interaction




Intrinsic Alignment

General Idea: Local alignment of galaxies in the tidal fields of the

large scale structure — linear model for elliptical galaxies
(See [Hirata et. al. (07), Hirata & Seljak (10)] for instance)

Important systematic error in weak lensing

Intrinsic ellipticity and size
@ -

See [Ghosh, Durrer & Schéfer (22)]
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Intrinsic Alignment

General Idea: Local alignment of galaxies in the tidal fields of the

large scale structure — linear model for elliptical galaxies
(See [Hirata et. al. (07), Hirata & Seljak (10)] for instance)

Important systematic error in weak lensing

Intrinsic flexions

See https://doi.org/10.1093/mnras/stab3680
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https://doi.org/10.1093/mnras/stab3680

Linear alignment model

Based on Jeans-equilibrium
(see [Hirata et. al. (07), Hirata & Seljak (10), Piras et. al. (18),
Ghosh, Durrer & Schifer (22)])

020, In (p(r)) = =0,
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Linear alignment model
Based on Jeans-equilibrium

(see [Hirata et. al. (07), Hirata & Seljak (10), Piras et. al. (18),
Ghosh, Durrer & Schifer (22)])

a20,In(p(r)) = —0,®

In unperturbed situation solved by

o1 = Feo (_ ¢U(2r)> _ Ns;\ars exp (_cba(zr))
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20 n (p(r)) = ~2,®
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Linear alignment model
Based on Jeans-equilibrium

(see [Hirata et. al. (07), Hirata & Seljak (10), Piras et. al. (18),
Ghosh, Durrer & Schifer (22)])

20 n (p(r)) = ~2,®

In unperturbed situation solved by

o1 = Feo (_ ¢(;(2r)) _ Ns;\ars exp (_cba(zr))

Assume constant number of stars Nsiars with

Netar b
Natars = szrp(r) = J‘dzrjas exp <— 0(2r)>

= Measure for cross section area:

A= szrexp (J"U@) = J()2ﬂd¢fooodrrexp (-q’a(zr))

4722



Linear alignment model

Quadrupolar perturbation in tidal field ...

1
O(r) - d(r) + 56361, |, _, rrb
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Linear alignment model

Quadrupolar perturbation in tidal field ...
1 a b
O(r) - d(r) + 56361, S|, _orir

... lead to a density profile perturbation

Nstars P(r 1 3
p(r) = /;, exp <— 0(2)> <1 - gaaé’bcbr rb>
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Linear alignment model

Quadrupolar perturbation in tidal field ...
1 a, b
O(r) - d(r) + 56361, S|, _orir
... lead to a density profile perturbation
N, d(r) 1
p(r) = Z‘jrs exp <— 3 ) <1 — Maaé’bcbrarb)

and according size/area change

21 0
A = f dqﬁf dr rexp (— ¢U(2r)) (1 — éﬁaﬁbd)rarb) )
0 0

while the number of stars stays the same
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Intrinsic surface brightness fluctuations

With the proportionality F o Nsiars, the surface brightness
I(r) o p(r) and

| =

>

= Surface brightness fluctuations

A

?:l‘égT

202 2T d¢ § dr rexp (—(r)/o?)

Explicit evaluation of integrals leads to

ST 1 §o7dfy drrexp (—(r)/0?) 2,0,0r°r
i
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Intrinsic surface brightness spectrum

With A — —¢2/x? and Limber approximation:

Rp— XH
e ) o €4D,2AJ X—ZCW%A W, 5Poo(k = £/X)
0

Weighting function

Wopa (x) = 2P (2(x) © (x — Xa) © (xas1 — X) 25252

with Peo(k = £/x) o k"™ T (k)2

2 B
and p(z) « (%) exp [— (z%) ] with 5 = 3/2 and zy = 0.64
(See [Laureijs et. al. (11)])
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Premetric Electrodynamics

General linear electrodynamics which allows for vacuum
birefringence [Hehl & Obdukov (03)]

1
SLe[A; G) = -3 J d*xwe GCIF, F oy

. -1 .
with volume element wg = 1/24 (Eabcd Gade) and area-metric Gabed
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Premetric Electrodynamics

General linear electrodynamics which allows for vacuum
birefringence [Hehl & Obdukov (03)]

1
ScLe[A; G) = -3 J d*xwe GCF, F oy

. -1 .
with volume element wg = 1/24 (Eabcd Gade) and area-metric Gabed

Compare with Maxwell:

1
SMaxwell [A; G) = _Z j d4X _detggacgbdFachd
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Premetric Electrodynamics

General linear electrodynamics which allows for vacuum
birefringence [Hehl & Obdukov (03)]

1
Sere [4: 6) = — [ d*xwc GHAFonfi

. 1 .
with volume element wg = 1/24 (€46c4 G?*°¥) ™" and area-metric G2b<d

Principal polynomial:

1
Pabcdkakbkckd _ —7(,(.)2 Euv frstuGuvr(aGb‘ps‘cGd)qtukakbkckd
24 Gtuvpq

Sy G

Cy

Figure: See [Duell et. al. (18)]
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Premetric Electrodynamics

General linear electrodynamics which allows for vacuum
birefringence [Hehl & Obdukov (03)]

1
SLe [A; G) = ~3 Jd‘lXWG G, Feq

Gabcd) -1 Gabcd

with volume element wg = 1/24 (Eabcd and area-metric

Find according gravity theories via Gravitational
Closure/Constructive Gravity [Duell et. al. (18)]

8/22



EM Conservation in AM

Covariant energy momentum conservation via Gotay Marsden
tensor

— generalized concept of energy momentum conservation for
arbitrary geometries
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EM Conservation in AM

Covariant energy momentum conservation via Gotay Marsden
tensor

— generalized concept of energy momentum conservation for
arbitrary geometries

[Schuller & Werner (17)] find the following conservation law ...

oo (seh?) =0
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EM Conservation in AM

Covariant energy momentum conservation via Gotay Marsden
tensor

— generalized concept of energy momentum conservation for
arbitrary geometries

[Schuller & Werner (17)] find the following conservation law ...
2y (we?) =0
. instead of

1
———0p (\/—detgN?) =0 V.N? =0
Voaag s (V7dmat) 0~

for metric case.

— replace \/Tetg with w¢ for volume measure!
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EM Conservation in AM

Covariant energy momentum conservation via Gotay Marsden
tensor

— generalized concept of energy momentum conservation for
arbitrary geometries

[Schuller & Werner (17)] find the following conservation law ...
2y (we?) =0

Weakly birefringent space-times:

Gabcd _ nacnbd _ nadnbc _ /—detneade + Habcd
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EM Conservation in AM

Covariant energy momentum conservation via Gotay Marsden
tensor

— generalized concept of energy momentum conservation for
arbitrary geometries

[Schuller & Werner (17)] find the following conservation law ...
2y (w6?) =0

Weakly birefringent space-times:
Effectively metric photon propagation with

Pab _ nab + hab

and conservation wrt. w¢

= VN #£0

= Photon excess o for line of sight integration
— F o F (14 pvio)-

See [Schuller & Werner (17)] for more-details §759



Surface brightness fluctuations

This leads to:
» Violation of Etherington distance duality D; = Dy /v/1 + fuio

(1+2)%Da

= D =
L Vv 1+;vaio
See [Schuller & Werner (17)]

» Violation of surface brightness conservation in lensing
1(0) = Igr (0) (1 + fivio) = (1 + 1vio) 1(S) (1 + 2)~*

ol _ 10— 1(O)er _
/ - /(O)GR = Hvio
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Surface brightness fluctuations
This leads to:

» Violation of Etherington distance duality D] = Dy /+/1 + pio

WiE T
See [Schuller & Werner (17)]

» Violation of surface brightness conservation in lensing
1(0) = Igr (O) (1 + fivio) = (1 + o) 1(S) (1 + 2)~*

51 _ 1(0) ~ I(O)c

- 7= T 1Ok Hvio
From CG the solution for a point mass source leads to the effective
potential
GM S
Pefr (1) = — = |(1+5eXP(—77|f—fM|))

c? |F— v
See [Schneider et al.(17), Alex(20)] for more details
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Surface brightness fluctuations

This leads to:
» Violation of Etherington distance duality D] = Dy /+/1 + pio

(1+2)%Da

= D, =
L V1+pvio
See [Schuller & Werner (17)]

> Violation of surface brightness conservation in lensing
1(0) = Ier (0) (1 + fivio) = (1 + pwio) 1(S) (L +2)~*

o _1(0)—1O)r _
/ 1(0)cr Hivio

In this case

_ 30GM (eXp(—n\Fs —ful)  exp(—nlo — 7M)>
Hvio = -

c? |75 — | |fo — |
See [Schuller & Werner (17)]
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Surface brightness fluctuation

For continuous mass distribution p(r) and average over different
sources and directions:

7 Hx

! (7) = -3 fo *axp (2(0)© (xa — X)

with
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Surface brightness fluctuation

For continuous mass distribution p(r) and average over different
sources and directions:

# (5) =-35 JOXH dx p(z(x))© (xa—x) H (CX) D, (3) (DY(ZCS,X)-
with

= ol A
5¢Y(r5) _ _& d3r'p(F') <exp( n\rs r D)

75— 7|

Linear limit: Comoving Poisson equation

_ Oy(x0,x)  3Qm S
(Aa=2 —»?) Y(C2 ) _ 2X2°5c(x9,x)a 3,
H
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Surface brightness fluctuation

For continuous mass distribution p(7) and average over different
sources and directions:

T(8) =35 [ axp00) 0 a0 D, (YOG,
with

5 — 7|

= N
5¢Y(rs> _ 7& d3rlp(Fl) <exp( 77"5 r |)>

In Fourier space the Yukawa field equation becomes

_ Sy (k,x)  3Qmg < _
2_-2 2\ Py (KX m 3
— (k a +n ) 2 = 2X%_/O 6C (k7X> a

with k = ¢/x
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Surface brightness fluctuation

For continuous mass distribution p(7) and average over different
sources and directions:

T(8) =35 [ axp00) 0 a0 D, (YOG,
with

5 — 7|

= N
5¢Y(rs> _ 7& d3rlp(Fl) <exp( 77"5 r |)>

In Fourier space the Yukawa field equation becomes

(DY(kvX) 2 2 2y —130mg % -1
— = — (k oc (k,
o2 (k* +n*a%) 2, (k;x)a

=

with k = ¢/x
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Surface brightness fluctuation

For continuous mass distribution p(r) and average over different
sources and directions:

Oy (x0, x)
C2

T (8) = -3 [T avp et -0 0.

Then the line of sight averaged violation factor becomes

~

#(6) =3 JXH dxp (z(x)) © (xa — x)
0

H(x) Dy(a) 2 2 2y —130mg =
— k k
c p 5 (k% +n%a%) 2X%15c( »X)
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Surface brightness fluctuation spectra

With Limber approximation:

N XH
GG : oI (4) o 9L X—XWYA (x) Wy 5 (x)

- XH
Gl CO O () oc —5302 f X%‘D/A We,a(x) Wy, (X)
0
90?2 -
x M0 =2 (k2 4 23%) 1 Py s (k)
4XH

Weighting function Wy a (x) = p(2(X)) © (xa — X) =&~ =5,
Ps.s. (k) oc k™ T (k)2.
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Numerical evaluation - Spectra
Choose values for §, n via scale argument:

5O (k) (K + n2a?) !

3 4]
c? o~

= 5 (k -1
5 xi,C(’X)a

with m multiples of the Hubble length:

n=1/(mxn) and 6/x% = 1/(m*x3%)
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Numerical evaluation - Spectra

n = 1/(mxn) and 3/x3; = 1/(m*x3)

108 . . .

105 — 0 — CW(0), 7 =100xy, 6=10" |
— OO, n7 =10xu, §=10"" — nonlinear

107 | — 0, 7' =10xm =10 — Ii_near .

101] | — €I, n7' =100xy, §=10"" size noise

10+ o

107 — = 7ﬁ§

81/ I-spectra £2/(2r) C3X(0)

10 30 100

multipole ¢

360 1000 3000
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Numerical evaluation - cumulated S2N Y2

(Nnoise)AB =

Ca(l) =

fsy » €llipticals selected

cumulative X(¢)/

2

Dtome § b with 0gize = 0.8 and /i = 3.545 x 108sr~! (Euclid)

Usize n
2=, 2 (ctscts)
NﬂéUlM)+7CMﬂy6U% )*’nghénh(f)+(ﬂhmx)AB~

10°

104 H
103 H

102

10t F

10°
10!
1072
103
10
10
10
107
108
10°

— Cip(0) — L0,

' =100xy, 6=10""

— CYp(0), n7 ' =10xs, 6=10"7  — CY3(0), n~ ' =100xy, §=10""*
— CY5(60), n7'=10xy, 6=10"2 = nonlinear
10 30 100 300 1000
multipole ¢

3000
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Summary

> Intrinsic surface brightness fluctuations could be observable
with Euclid — X(¢) >3
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Summary

» Intrinsic surface brightness fluctuations could be observable
with Euclid — X(¢) >3

» Surface brightness fluctuations due to area-metric refinements
much smaller with chosen parameters

» Different parameterisations possible?

Thank you very much for listening!
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Back-Up: Sérsic model for instrinsic alignment

With the proportionality F o Ngtars and the surface brightness
I(r) o p(r) and

| =

>

= Surface brightness fluctuations

—0A
A ] 202 S”d¢§80drrexp(—¢(r)/a2)

I 1 SSW do Sgo dr rexp (—®(r)/o?) 020p®rrP

73|‘{§:

Insert Sérsic model

) o (_¢U(2r>) 2 exp (—b(n) l(rs;le)l/n B 1]) ’

with b(n) ~ 2n — % and n the Sérsic index
— Evaluate integrals in polar coordinates
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Back-Up: Sérsic model for instrinsic alignment

7] AP
T = SSérsic(n)DIA >
Alignment parameter Dy = %%érialeb_zn FEEZ;

r(4n)?
Ssersic(n) = 4%

With A — —¢2/x? and Limber approximation:

A XH |
1. oot gy = e“ssérsic(n)%mf XL; W, AW, 5Poo(k = £/)
0

Weighting function
Woa(x) = 5P (2(x) © (x — xa) © (xar1 — X) 5524

Poo(k = £/x) oc k"s~4T (k)?

p(z) o <£>2exp [7 (:)B} with 8 = 3/2 and zp = 0.64 [Laureijs et. al. (11)]

Z0
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