Neutrino Mass and the Early Universe: Dark Matter and Leptogenesis

Southampton

Bowen Fu

Cosmology from Home 2022

Neutrino portal dark matter in type I seesaw model: limitation *

- Type Ib seesaw model and its cosmological properties **
 - Neutrino portal dark matter
 - Resonant leptogenesis
 - Vector portal dark matter (a bonus)

Outline

Neutrino Portal Dark Matter

General neutrino portal: $y_i \phi \overline{\chi} N_i$ the dark particles are charged under a Z₂ symmetry **

dark scalar dark fermion RH neutrino

heavy scalar scenario: $\phi \rightarrow \chi N_i$ **

Freeze-in production of dark matter: **

v-Yukawa dominance: sizeable Y **

dark sector process $\propto y^4$

Chianese, Fu, King <u>1910.12916</u>

Neutrino Portal Dark Matter in the Littlest Seesaw model

- Littlest Seesaw model: a highly predictive version of type I seesaw model with 2 RHNs *
- * v-Yukawa interaction can dominate dark matter production when the RHN mass is above 4 TeV
- Leptogenesis in the Littlest Seesaw model: $M_{R1} = 5.1 \times 10^{10}$ GeV, $M_{R2} = 3.3 \times 10^{14}$ GeV **
- Production through graviton for superheavy particles Chianese, Fu, King 2009.01847 **
- ***

Q: Can we find a model where v-Yukawa dominance can appear for GeV scale heavy neutrino? And perhaps compatible with leptogenesis?

Chianese, King <u>1806.10606</u>

King, Sedgwick, Rowley 1808.01005

Nevertheless, a v-Yukawa dominant region can be found, but it is very hard to be tested by experiments

Type Ib Seesaw Model

*

Traditional type I seesaw mechanism (type Ia)

- At least 2 Majorana RH neutrinos + 1 Higgs
- I Yukawa coupling for each RH neutrino
- 2 free parameters after considering neutrino mass an mixing: M_{R1} and M_{R2}
- To have a sizeable coupling, the right-handed neutrino has to be above TeV scale

- 1 Dirac neutrino +2 Higgs
- I Yukawa coupling for each Higgs
- * 3 free parameters after considering neutrino mass an mixing: Y_1 , Y_2 and M_N
- One of Y₁, Y₂ can be small while the other one is sizeable, providing GeV scale heavy neutrino

Neutrino Portal Dark Matter

Type Ib Seesaw Model with a Neutrino Portal

Particles and symmetries *

	Q_{lpha}	$u_{R\beta}$	$d_{R\beta}$	L_{α}	$e_{R\beta}$	Φ_1	Φ_2	N_{R1}	$N_{\rm R2}$	ϕ	$\chi_{L,R}$
$SU(2)_L$	2	1	1	2	1	2	2	1	1	1	1
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0
Z_3	1	ω	ω	1	ω	ω	ω^2	ω^2	ω	ω	ω^2
Z_2	+	+	+	+	+	+	+	+	+	_	_

Seesaw Lagrangian and neutrino portal $\mathcal{N} = (N_{R1}^c, N_{R2})$ **

> $\mathcal{L}_{\text{seesawIb}} = -Y_{1\alpha}^* \overline{L^c}_{\alpha} \Phi_1^* \mathcal{N}_L - Y_{2\alpha} \overline{L}_{\alpha} \Phi_2 \mathcal{N}_R - M_N \overline{\mathcal{N}_L} \mathcal{N}_R + \text{h.c.}$ $\mathcal{L}_{N_{R} \text{portal}} = y \phi \overline{\chi} \mathcal{N} + \text{h.c.}$

Freeze-in production of dark matter *

Neutrino-Yukawa processes

Chianese, Fu, King 2102.07780

Dark sector processes

Relation to Experiments

- ✤ 2 key parameters:
 - $tan\beta$: the ratio of VEVs of the Higgs v_2/v_1
 - m_{ϕ}/m_{χ} : For hierarchical mass spectrum, the dark matter production depends on m_{ϕ}/m_{χ}
- * U^2 : active-sterile neutrino mixing strength

Chianese, Fu, King 2102.07780

- * The strongest constraint is given by v_{μ} mixing
- v-Yukawa dominance is allowed above the coloured dashed lines
- * Less constrained as $tan\beta$ increases
- * More constrained as m_{ϕ}/m_{χ} increases

Leptogenesis

An extended model with a superheavy third RHN and scalar field *

$$\mathcal{L}_{\text{seesawIb}} = -Y_{1\alpha}\overline{\ell}_{\alpha}\phi_1 N_{R1} - Y_{3\alpha}\overline{\ell}_{\alpha}$$
$$-M\overline{N_{R1}^c}N_{R2} - \frac{1}{2}M_3\overline{N_{R2}}$$

N_{R1} and N_{R2} gain mass splitting through mixing with N_{R3} ** $M_{N} = \begin{pmatrix} 0 & M & M_{13} \\ M & 0 & M_{23} \\ M_{13} & M_{23} & M_{3} \end{pmatrix} \qquad \Delta M_{12} = \frac{\Re \left[(M_{13} - M_{23})^{2} \right]}{2M_{33}}$

•*•

Vector Portal

Type Ib Seesaw Model with a U(1)' Symmetry

- Dirac neutrino can be charged under gauge symmetry **
- Particles and symmetries *

	\mathcal{N}	$\chi_{L,I}$
$SU(2)_L$	1	1
$U(1)_Y$	0	0
U(1)'	1	$\frac{1}{2}$

 \mathcal{N}

 $\overline{\mathcal{N}}$

91

Z'

- Majorana dark matter candidate $y_{\chi}^{L}\overline{\phi} \overline{\chi}_{L}^{c} \chi_{L} + y_{\chi}^{F}$ * After ϕ gains a VEV, the U(1)' symmetry is broken into a Z₂ * symmetry, under which only χ is charged
- Freeze-out production of DM *

$$_{\chi}^{R}\overline{\phi}\,\overline{\chi_{R}^{c}}\chi_{R}+h.c.$$

2

Summary

- Features of Type Ib Seesaw Model
 - 3 free parameters after considering neutrino mass and mixing

 - portal with GeV scale heavy neutrino
 - Resonant leptogenesis can be realised
 - A Dirac neutrino that can be charged under a U(1)' gauge symmetry

• Allow a connection between dark matter and neutrino physics through neutrino

Thank You!

Leptogenesis in Type Ib Seesaw Model

- In the minimal type Ib seesaw model, the correct a mass is completely degenerate

$$\left(\epsilon_{n_i}^{\text{wave-function}}\right)_{k\alpha} \propto \sum_{j \neq i} \sum_{l,\beta} Y_{ik\alpha} Y_{jk\alpha} Y_{il\beta} Y_{jl\beta} \sin\left(\theta_{ik\alpha} - \theta_{jk\alpha} + \theta_{il\beta} - \theta_{jl\beta}\right)$$

* In the extension of the type Ib seesaw model with difference is developed as $(\theta_2 - \theta_1)$

$$\tan \theta_1 \simeq -\frac{1}{2MM_{33}} \Im \left[(M_{13} + M_{23})^2 \right],$$

In the minimal type Ib seesaw model, the correct asymmetry cannot be produced because the heavy neutrino

In the extension of the type Ib seesaw model with a superheavy third RHN and scalar field, an extra phase

$$\tan \theta_2 \simeq \frac{1}{2MM_{33}} \Im \left[(M_{13} - M_{23})^2 \right]$$

Type Ib Seesaw Model with a U(1)' Symmetry

Fourth family of vector-like fermions *

	$q_{L\alpha}$	$u_{R\beta}$	$d_{R\beta}$	ℓ_{Llpha}	$e_{R\beta}$	q_4	u_4	d_4	ℓ_4	e_4	Φ_1	Φ_2	\mathcal{N}	χ_R	ϕ
$SU(2)_L$	2	1	1	2	1	2	1	1	2	1	2	2	1	1	1
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	0
U(1)'	0	0	0	0	0	-1	1	1	-1	1	1	-1	1	$\frac{1}{2}$	1

Due to the U(1)' charges of the Higgs doublets, the charged fermions can only gain mass from non-** renormalisable operators $\overline{q_L}_{\alpha} \Phi_2 u_{R\beta} \phi, \ \overline{q_L}_{\alpha} \tilde{\Phi}_1 d_{R\beta} \phi, \ \overline{\ell}_{\alpha} \tilde{\Phi}_1 e_{R\beta} \phi$

Fourth family of vector-like fermions: an example of up-type quark mass *

Fu, King 2110.00588

**

- **

 - Resonant amplitude

$$|\mathcal{M}|^2 \propto rac{1}{(s - M_{Z'}^2)^2 + M_{Z'}^2}$$