#### Structure Formation and the Global 21-cm Signal with Coulomb-like Dark Matter

(Arxiv link coming soon)

#### **Trey Driskell (USC - Vera Gluscevic)**



### Collaborators







Ethan Nadler (USC, Carnegie Observatories) Jordan Mirocha (McGill) Rui An (USC)

Andrew Benson Kimberly Boddy (Carnegie (UT Austin) Observatories) Tim Morton (USC)

Jack Lashner (USC)

/era Glusc (USC)





# **DM-Baryon Interactions**



Cosmology





# **DM-Baryon Interactions**

- Scattering of DM and baryons exchanges heat and momentum
- Momentum-transfer rate cross section depends on relative velocity as:

$$\sigma_{\rm MT} = \sigma_0 v^n$$

• Coulomb-like (millicharge) Interaction scales as  $\sim v^{-4}$ 





Astro2020 Science White Paper: Cosmological Probes of Dark Matter Interactions: The Next Decade, Gluscevic, et al.



### 21-cm & EDGES







## Past Work

- What  $\sigma_0$  can explain the EDGES signal?
- Missing Components:
  - How do Coulomb-like interactions alter the formation of structure?
  - How does that effect the timing of the signal?
  - How does astrophysics change the necessary  $\sigma_0$ ?



R. Barkana, N. J. Outmezguine, D. Redigolo, and T. Volansky, Phys. Rev. D 98, 103005 (2018).



# Structure Formation and Astrophysical Model

## Structure Formation

- formation of structure
- N-body / Hydro simulations prohibitively slow
- Instead, analytically predict halo abundance using **Press-Schechter theory**





#### • Want a fast way to convert linear P(k) to non-linear

10

## Structure Formation



# Astrophysical Model

| Physical Process | Model / Assumption                                  | Parameterization                                                                                                    | Varied Paramete                     |
|------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Galaxy Formation | Every halo with $M_{halo} > M_{vir}$ hosts a galaxy | $f_{ m coll}\left(rac{ m dn}{ m dM},{ m M}_{ m vir} ight)$                                                         | $T_{\rm vir} \in \{500{ m K}, 10^4$ |
| Star Formation   | Constant star formation efficiency                  | $\dot{\rho_{\star}} = \rho_{\rm b} f_{\star} \dot{f}_{\rm coll}$                                                    | $f_{\star} \in \{0.01, 0.05\}$      |
| Stellar Emission | Emission in each band $\propto {\rm SFRD}$          | $\epsilon_{\nu} = c_i f_i I_{\nu} \dot{\rho_{\star}}$                                                               | $f_{\rm X} \in \{1, 10\}$           |
| IGM Evolution    | Emitted photons heat the IGM                        | $\epsilon_{\rm X}(\hat{J}_{\nu})$ $\Gamma_{\rm X}(\hat{I}) \sim (\hat{I})$                                          | None                                |
|                  | Ly- $\alpha$ photons mediate 21-cm transition       | $\Gamma_{\rm HI}(J_{\nu}), \ \gamma_{\rm HI}(J_{\nu})$<br>$x_{lpha} \propto \widehat{J}_{lpha} S_{lpha}(T_{\rm K})$ | None                                |







# Coulomb-Like Global Signal

- Heat exchange cools baryons, deepening  $\delta T_h$
- Scattering Correction  $S_{\alpha}$ reduces the amplitude
- Delayed formation of structure redshifts the signal to later times

mK



## **DM-b Interaction Strength**





### **EDGES-based Window**





### "Consistent" Predictions



17

## DM-b Parameter Space

- First "upper limit" on  $\sigma_0$ from 21-cm alone
- "Lower limit" nearly x10 higher in  $\sigma_0$  than previous results due to  $x_{\alpha}$ correction





# Millicharged DM

- Thermal evolution suppressed by ionized traction
- Suppression of power spectrum mostly prerecombination, same delay as Coulomb-like DM
- No consistent region for 100% Millicharged DM

#### Millicharged DM







## Conclusion

- models
- First "self-consistent" prediction of the 21-cm Global Signal in
- Future:
  - Accelerate the code to enable sampling of astrophysical parameters & sampling of full likelihood

First prediction of structure formation (HMF) in Coulomb-like DM

Coulomb-like DM by including the impact on structure formation

Scattering correction is essential ingredient to 21-cm in IDM

Future 21-cm experiments will update/improve EDGES prediction

