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Strong coupling in gravity

▶ If perturbation theory around desirable exact solution fails to
capture some inherently nonlinear d.o.f...

▶ ...that d.o.f is said to be strongly coupled on the background,
which becomes dynamically unreachable 2009.08197
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Strong coupling in gravity

▶ In D > 4, fine-tuned Gauss–Bonnet admixture strongly
couples the whole graviton on a maximally symmetric
background 0807.2864
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Strong coupling in gravity

▶ Hǒrava gravity suggested to be strongly coupled in the
IR 1701.06087 , 0905.2579 , 0911.1299
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Strong coupling in gravity

▶ Massive gravity has problematic vDVZ scalar, but nonlinear
completions show that vDVZ becomes strongly coupled
(screened) M. Fierz et al. (1939) ,

H. van Dam et al. (1970) , V. I. Zakharov (1970) ,
D. G. Boulware et al. (1972) , hep-th/0210184 ,
A. I. Vainshtein (1972) , hep-th/0106001
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Strong coupling in gravity

▶ Same strong coupling effect blamed for Boulware–Deser ghost
(final status of massive gravity
contested) D. G. Boulware et al. (1972) ,

gr-qc/0505134 , 1401.4173 , 1007.0443 ,
1011.1232
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Non-Riemannian gravity (geometric formulation)

▶ Most general connection contains contorsion and disformation

∇νV
µ ≡ ∂νV

µ + ΓµλνV
λ, Γµνσ = Cµ

νσ + Kµ
νσ + Lµνσ

▶ These introduce torsion and non-metricity Qµνσ ≡ ∇µgνσ

Lµνσ ≡ 1

2
Qµ

νσ − Q µ
(ν| |σ) , Kµ

νσ ≡ 1

2
Tµ

νσ + T µ
(ν| |σ)

▶ Einstein–Hilbert Lagrangian of GR is really

LG = − 1

2κ
R +

1

κ
λ ρσ
µ Tµ

ρσ +
1

κ
λ̂ ρσ
µ Qµ

ρσ
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Torsion particle zoo (particle physics formulation)

▶ Metric (tetrad) and torsion (spin connection) are 40 d.o.f

16[hµa ] + 24[Aab
µ] = 40

▶ Gauge fixing Poincaré symmetry leaves up to 20 d.o.f

40− 2[gauge]× 10[R1,3 ⋊ SO+(1, 3)] = 20

▶ These are the 2+ graviton and 0±, 1±, 2± massive rotons

20 = 2[2+] + 1[0+] + 1[0−] + 3[1+] + 3[1−] + 5[2+] + 5[2−]
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Hamiltonian for missing velocities

▶ Lagrangian L(ψn, ψ̇n) has N d.o.f ψn, only M < N dynamical

▶ Hamiltonian H(ψn, πn) ≡ πnψ̇
n − L has 2N d.o.f ψn, πn

▶ Non-dynamical d.o.f from missing ψ̇m, demands constraints

πm ≡ ∂L

∂ψ̇m
= 0, φm(ψ

n, πn) ≡ πm ≈ 0

▶ ‘Weak’ equality φm ≈ 0 defines physical part of phase space

▶ Hamiltonian made invertible for all ψ̇n using multipliers un

HT ≡ H − unφn
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The Dirac algorithm

▶ So we can use the total Hamiltonian HT ≡ H − unφn to study
the dynamics

▶ But need condition that we keep φm ≈ 0, equivalently

φ̇m ≡
∫

d3x ′
{
φm,H

′
T

}
≡

∫
d3x ′

[ {
φm,H

′}− un′
{
φm, φ

′
n

} ]
≈ 0

▶ Depending if {φm, φn} ≈ 0 this determines un or sets χm ≈ 0

χm(ψ
n, πn) ≡ {φm,H} ≈ 0, un ≈ {φm, φn}−1 {φm,H}
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Finding the d.o.f

▶ Repeat to find total of C primaries φn, secondaries, χn...

▶ Of these CFC commute with everything (first class)

▶ While CSC ≡ C − CFC do not commute (second class)

▶ Remember L(ψn, ψ̇n) has N d.o.f ψn, only M < N dynamical

▶ Dirac algorithm gives systematic way to find this

M ≡ 1

2
(2N − 2CFC − CSC)

▶ Poisson matrix {φn, φm} is thus particle spectrum ‘barcode’
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Yo–Nester no-go theorem

▶ Remember the 2+ graviton and 0±, 1±, 2± massive rotons

20 = 2[2+] + 1[0+] + 1[0−] + 3[1+] + 3[1−] + 5[2+] + 5[2−]

▶ Famous Hamiltonian analyses Hsin Chen et al. (1998) ,
gr-qc/9902032 , gr-qc/0112030

▶ Activating any one roton strongly couples others (possibly
except 0+ and 0−)

▶ It has become doctrine to avoid non-Riemannian extensions
beyond exact GR analogues 1903.06830 ,

1903.12072 , Daniel Kristoffer Blixt (2021) ,

2111.04716 , 2006.07406
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Even the ‘new IR’ is strongly coupled

▶ In 2101.02645 we tested novel quadratic
LG = R2 + T 2 theories from 1812.02675 ,

1910.14197 , 2003.02690 , 2006.03581

▶ Linearised. . .

∼
𝜑𝑘𝑙 𝜑⟂

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
∼
𝜑𝑘𝑙 ⋅ ⋅ ⋅ ⋅ 5
𝜑⟂ ⋅ ⋅ ⋅ ⋅ 1

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ 5

5 1 5 5(1)

∼
𝜑𝑘𝑙 𝜑⟂

∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
∼
𝜑𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5
𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

∧
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

5 1 3 3 5 5(2)

𝜑 𝜑
⟂𝑘

∼
𝜑𝑘𝑙 𝜑⟂

∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝜑
⟂𝑘

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
∼
𝜑𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5
𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

∧
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

1 3 5 1 3 3 5 5(3)

𝜑 𝜑
⟂𝑘

∼
𝜑𝑘𝑙 𝜑⟂

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝜑
⟂𝑘

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
∼
𝜑𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

1 3 5 1 5 5(4)

↓ ↓ ↓

𝜑⟂
∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ 1

→
∧
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ 3

→
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ 5

1 3 3 5 5(5)

↓ ↓

𝜑 𝜑⟂
∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

→
∧
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

1 1 3 3 5 5(6)

↓ ↓ ↓

𝜑
∧
𝜑𝑘𝑙 𝜑⟂ 𝜑P ∼

𝜑⟂𝑘𝑙 𝜑T
𝑘𝑙𝑚

𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

→
∧
𝜑𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

→ 𝜑P ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

1 3 1 1 5 5(7)

↓ ↓

𝜑
∧
𝜑𝑘𝑙 𝜑⟂

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚

𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ 1

→
∧
𝜑𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ 3

𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ 1
∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ 5

1 3 1 5 5(8)
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Even the ‘new IR’ is strongly coupled

▶ In 2101.02645 we tested novel quadratic
LG = R2 + T 2 theories from 1812.02675 ,

1910.14197 , 2003.02690 , 2006.03581

▶ Linearised. . . nonlinear!

∼
𝜑𝑘𝑙 𝜑⟂

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
∼
𝜑𝑘𝑙 𝜋̂ ⋅ 𝜋̂ 𝜋̂ 5
𝜑⟂ ⋅ ⋅ ⋅ ⋅ 1

∼
𝜑⟂𝑘𝑙 𝜋̂ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

𝜋̂ ⋅ ⋅ ⋅ 5

5 1 5 5(1)

∼
𝜑𝑘𝑙 𝜑⟂

∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
∼
𝜑𝑘𝑙 𝜋̂ ⋅ ⋅ ⋅ ⋅ 𝜋̂ 5
𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

∧
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

𝜋̂ ⋅ ⋅ ⋅ ⋅ ⋅ 5

5 1 3 3 5 5(2)

𝜑 𝜑
⟂𝑘

∼
𝜑𝑘𝑙 𝜑⟂

∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝜑
⟂𝑘

⋅ 𝜋̂ ⋅ ⋅ 𝜋̂ ⋅ ⋅ ⋅ 3
∼
𝜑𝑘𝑙 ⋅ ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ 𝜋̂ 5
𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

∧
𝜑⟂𝑘𝑙 ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

⋅ ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ ⋅ 5

1 3 5 1 3 3 5 5(3)

𝜑 𝜑
⟂𝑘

∼
𝜑𝑘𝑙 𝜑⟂

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝜑
⟂𝑘

⋅ 𝜋̂ ⋅ 𝜋̂ 𝜋̂ 𝜋̂ 3
∼
𝜑𝑘𝑙 ⋅ ⋅ 𝜋̂ ⋅ 𝜋̂ 𝜋̂ 5

𝜑⟂ ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ 1
∼
𝜑⟂𝑘𝑙 ⋅ 𝜋̂ 𝜋̂ ⋅ ⋅ ⋅ 5

𝜑T
𝑘𝑙𝑚

⋅ 𝜋̂ 𝜋̂ ⋅ ⋅ ⋅ 5

1 3 5 1 5 5(4)

↓ ↓ ↓

𝜑⟂
∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ 1

→
∧
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ 3

→
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ 5

1 3 3 5 5(5)

↓ ↓

𝜑 𝜑⟂
∧
𝜑⟂𝑘𝑙

⇀
𝜑𝑘

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚
𝜑 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝜑⟂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

→
∧
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
⇀
𝜑𝑘 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

∼
𝜑⟂𝑘𝑙 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5

1 1 3 3 5 5(6)

↓ ↓ ↓

𝜑
∧
𝜑𝑘𝑙 𝜑⟂ 𝜑P ∼

𝜑⟂𝑘𝑙 𝜑T
𝑘𝑙𝑚

𝜑 ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ 1

→
∧
𝜑𝑘𝑙 𝜋̂ ⋅ 𝜋̂ 𝜋̂ 𝜋̂ 𝜋̂ 3

𝜑⟂ ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ 1

→ 𝜑P ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ 1
∼
𝜑⟂𝑘𝑙 ⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ 𝜋̂ ⋅ ⋅ ⋅ ⋅ 5

1 3 1 1 5 5(7)

↓ ↓

𝜑
∧
𝜑𝑘𝑙 𝜑⟂

∼
𝜑⟂𝑘𝑙 𝜑T

𝑘𝑙𝑚

𝜑 ⋅ 𝜋̂ ⋅ ⋅ ⋅ 1

→
∧
𝜑𝑘𝑙 𝜋̂ ⋅ 𝜋̂ 𝜋̂ 𝜋̂ 3

𝜑⟂ ⋅ 𝜋̂ ⋅ ⋅ ⋅ 1
∼
𝜑⟂𝑘𝑙 ⋅ 𝜋̂ ⋅ ⋅ ⋅ 5

→ 𝜑T
𝑘𝑙𝑚

⋅ 𝜋̂ ⋅ ⋅ ⋅ 5

1 3 1 5 5(8)
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Hamiltonian Gauge Gravity Surveyor (HiGGS)

▶ Hamiltonian analysis of curvature/torsion 2206.00658

▶ Mathematica package, based in xAct
(xAct.es 0704.1756 , 0802.1274 ,

0803.0862 , 0807.0824 , 1302.6174 ,
1308.3493 )

▶ Can use on a desktop, but parallelised for supercomputers

▶ Clone the repository at github.com/wevbarker/HiGGS

W. E. V. Barker Supercomputers vs strong coupling in gravity
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Scaling to supercomputers

SLURM

Node Cluster
Launch master
$KernelID = 0
BuildHiGGS[]

Organise theories
StudyTheory[]

(Idle)

Launch sub-kernels
$KernelID > 0
BuildHiGGS[]

DefTheory[]

(Idle)Organise brackets
(StudyTheory[])

(Idle) PoissonBracket[]

(Idle)Organise velocities
(StudyTheory[])

(Idle) PoissonBracket[]
ToNesterForm[]

Output
(StudyTheory[])

▶ Trick is to parallelise over
Poisson brackets

▶ Model as an Amdahl task
David P. Rodgers (1985)

for n-core speedup s(n)

S(n) =
1

1− p + p
n

,

▶ Parallel fraction p limited by
a few ‘hard’ brackets

W. E. V. Barker Supercomputers vs strong coupling in gravity
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Scaling to supercomputers

▶ Why are Poisson brackets ‘hard’? Formula is for functionals{
A,B

}
≡

∫
d3x

[
δA
δbiµ

δB
δπ µ

i

+
δA
δAij

µ

δB
δπ µ

ij

− δA
δπ µ

i

δB
δbiµ

− δA
δπ µ

ij

δB
δAij

µ

]

▶ But local quantities are functionals via Dirac distributions{
A(x1),B(x2)

}
≡

∫
d3x

[
J1(x)δ3(x − x1)δ

3(x − x2)J
α

2 (x)δ3(x − x1)∂αδ
3(x − x2)

+ J α
3 (x)∂αδ

3(x − x1)δ
3(x − x2)J

αβ
4 (x)∂αδ

3(x − x1)∂β δ
3(x − x2)

]
▶ Thus local Poisson bracket can be a differential operator∫

d3x2
{
Aú(x1),Bv́ (x2)

}
C v́ (x2) ≡ J1v́ (x1)C v́ (x1) + J α

2v́ (x1)DαC v́ (x1)

+ J αβ
3v́ (x1)DαDβ C v́ (x1)
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Lagrange multipliers

▶ Remember GR Lagrangian

LG = − 1

2κ
R +

1

κ
λ ρσ
µ Tµ

ρσ +
1

κ
λ̂ ρσ
µ Qµ

ρσ

▶ Now extend use of multipliers 2205.13534

LG = − 1

2κ
R +

6∑
I=1

(
α̂IR

µν
σρ + ᾱIλ

µν
σρ

)
P̂I σρ ξζ
µν κπ Rκπ

ξζ

+
1

κ

3∑
M=1

(
β̂MTµ

νσ + β̄Mλ
µ
νσ

)
P̂M νσ ξζ
µ π Tπ

ξζ +
1

κ
λ̂ ρσ
µ Qµ

ρσ
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Supercomputer survey
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▶ Start with strongly
coupled theory

▶ Brute-force the
Hamiltonian analysis
of 3× 23 × 23 = 192
variant theories

▶ About one hour using
the Peta-4
supercomputer

▶ One line per core, one
colour per theory
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▶ Special case identified

LG = − 1

2κ
R + αR[µν]R

[µν]

+
1

κ
λ ρσ
µ

(
Tµ

ρσ + T µ
ρ σ

+δµρT
ξ
σξ

)
+

1

κ
λ̂ ρσ
µ Qµ

ρσ

▶ No new d.o.f beyond
GR graviton

▶ Not even strongly
coupled d.o.f
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𝜙⟨𝑖𝑗⟩⟂

𝜐⟨𝑖𝑗⟩⟂

∼
𝜑𝑖𝑗

∼
𝑢
𝑖𝑗

∼
𝜑⟂𝑖𝑗

∼
𝑢
⟂𝑖𝑗

∼
𝜒⟂𝑖𝑗

𝜙T
𝑖𝑗𝑘

𝜐T
𝑖𝑗𝑘

𝜒T ∥
𝑖𝑗𝑘

𝜑T
𝑖𝑗𝑘

𝑢T
𝑖𝑗𝑘

𝜒T
𝑖𝑗𝑘

▶ Special case identified

LG = − 1

2κ
R + αR[µν]R

[µν]

+
1

κ
λ ρσ
µ

(
Tµ

ρσ + T µ
ρ σ

+δµρT
ξ
σξ

)
+

1

κ
λ̂ ρσ
µ Qµ

ρσ

▶ Nontrivial correction
to GR from an action

▶ Strictly no new
particles (even in
strong gravity)
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The ‘contact’ theory

▶ Correction to Einstein field equations

κτµν = Gµν + ακ
[
2
(
2Rλ[µR

λ
ν] +

(
2R(µ[λσ]ν) + gµν R[λσ]

)
R [λσ]

)
+
(
T 2 +∇ · T + T · ∇+∇2

)
µν[λσ]

R [λσ]
]

▶ Where all non-metricity and part of the torsion is disabled

Tµ
[ρσ] + T µ

[ρ σ] + δµ[ρT
ξ
σ]ξ = 0, Qρ

µν = 0

▶ And remaining torsion subject to auxiliary constraint

T = ακ
(
T +∇

)
[λσ]

R [λσ]
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Summary

1. Perturbations around exact solutions meaningless if you don’t
know the nonlinear d.o.f (unless you are doing EFT)

2. Hamiltonian analysis can be done on silicon, and at scale

3. HiGGS package available for curvature and/or torsion gravity

4. Nontrivial, action-derived modification to GR with no new
d.o.f and no strong coupling (awaits further study)

κτµν = Gµν + ακ
[
2
(
2Rλ[µR

λ
ν] +

(
2R(µ[λσ]ν) + gµν R[λσ]

)
R [λσ]

)
+
(
T 2 +∇ · T + T · ∇+∇2

)
µν[λσ]

R [λσ]
]
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