Cosmology and scalarized compact objects

black holes and neutron stars

Georgios Antoniou

May 18, 2022

Nottingham Centre of Gravity School of Mathematical Sciences University of Nottingham

Table of contents

- 1. Origins and motivation
- 2. Scalarization and cosmology
- 3. Perspectives

The talk is based on

- Phys. Rev. D 103 (2021) No. 2, 024012, arXiv:2004.14985 [gr-qc], in collaboration with L. Bordin and T. Sotiriou.
- Phys. Rev. D (accepted) arXiv:2204.01684 [gr-qc] in collaboration with C.F.B. Macedo, R. McManus and T. Sotiriou.
- Phys. Rev. D 104 (2021) 4, 044002, arXiv:2105.04479 [gr-qc], in collaboration with A. Lehébel, G. Ventagli and T. Sotiriou.

Origins and motivation

 \rightarrow Gravity is perhaps the least understood of the physical interactions and as of now it is best described using the theory of **General Relativity (GR)**.

$$S_{GR} = \frac{1}{2\kappa} \int d^4 x \sqrt{-g} R \tag{1}$$

 \rightarrow Gravity is perhaps the least understood of the physical interactions and as of now it is best described using the theory of **General Relativity** (GR).

$$S_{GR} = \frac{1}{2\kappa} \int d^4 x \sqrt{-g} R \tag{1}$$

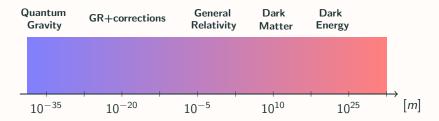
 \rightarrow Despite its numerous successes, GR faces limitations and challenges and allows for generalizations:

- Not properly quantized
- Issues with singularities (and infinities)
- Not very constrained in the strong-field regime
- Dark energy and dark matter are not well described, within the standard GR framework

Gravity = GR?

To tackle these issues new terms are introduced

- scalar or vector fields $(\phi, \vec{A}...)$
- curvature corrections (R^2 , $R^{ab}R_{ab}$, $R^{abcd}R_{abcd}$, *RR...)



Scalarization and cosmology

$$S = \frac{c^3}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi \right) + S_m \left[\psi_m, e^{2a(\varphi)} g_{\mu\nu} \right].$$
(2)

• Scalar eq. yields $\Box \phi \propto \ldots a'(\varphi) T$.

• If, for some
$$\phi = \phi_0$$
, $a'(\phi_0) = 0 \Rightarrow GR$.

- Take $a(\varphi) = \beta_0 \varphi^2/2$.
- Estimating the energy

Energy
$$\approx mc^2 \left(rac{arphi_c^2/2}{Gm/Rc^2} + e^{eta_0 arphi_c^2/2}
ight)$$

For large M/R minima start forming.

$$S = \frac{c^3}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi \right) + S_m \left[\psi_m, e^{2a(\varphi)} g_{\mu\nu} \right].$$
(2)

• Scalar eq. yields
$$\Box \phi \propto \dots a'(\varphi) T$$
.

• If, for some
$$\phi = \phi_0$$
, $a'(\phi_0) = 0 \Rightarrow GR$.

• Take
$$a(\varphi) = \beta_0 \varphi^2/2$$
.

• Estimating the energy

Energy
$$\approx mc^2 \left(\frac{\varphi_c^2/2}{Gm/Rc^2} + e^{\beta_0 \varphi_c^2/2} \right)$$

For large M/R minima start forming.

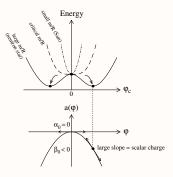


Fig. taken from arXiv:gr-qc/0402007

One class of theories within the Horndeski framework that evades no-hair theorems contains the Gauss-Bonnet term coupled with the scalar field.

$$S = \frac{1}{2\kappa} \int d^4 x \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 + f(\phi) \mathcal{G} \right].$$
(3)

$$\rightarrow \text{ The scalar eq.} \qquad \Box \phi = -f'(\phi) \mathcal{G} \Rightarrow \left[\Box + \overbrace{f''(\phi_0)\mathcal{G}}^{-m_{\text{eff}}^2} \right] \delta \phi = 0.$$

 \rightarrow We are interested in theories that are connected to GR and therefore accept GR as a solution $\rightarrow f'(\phi_0)=0, \ -f''(\phi_0)\, \mathcal{G}>0^{-1,2,3}$.

¹Antoniou et al. Phys. Rev. Lett. 120 (2018) 13, 131102 ²Silva et al. Phys. Rev. Lett. 120 (2018) 13, 131104 ³Doneva et al. Phys. Rev. Lett. 120 (2018) 13, 131103

 \rightarrow The

One class of theories within the Horndeski framework that evades no-hair theorems contains the Gauss-Bonnet term coupled with the scalar field.

$$S = \frac{1}{2\kappa} \int d^4 x \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 + f(\phi) \mathcal{G} \right].$$
(3)
scalar eq.
$$\Box \phi = -f'(\phi) \mathcal{G} \Rightarrow \left[\Box + \overbrace{f''(\phi_0) \mathcal{G}}^{-m_{\text{eff}}^2} \right] \delta \phi = 0.$$

 \rightarrow We are interested in theories that are connected to GR and therefore accept GR as a solution $\rightarrow f'(\phi_0) = 0, -f''(\phi_0) \mathcal{G} > 0.$

If $m_{\rm eff}^2 < 0 \longrightarrow$ non-trivial scalarized solutions

Scalarization in Black Holes

$$\mathcal{G}_{\text{Kerr}} = \frac{48M^2}{(r^2 + \chi^2)^6} \left(r^6 - 15r^4\chi^2 + 15r^2\chi^4 - \chi^6\right)$$

• For $\chi = 0 \Rightarrow \mathcal{G} > 0$ scalarization requires $f''(\phi_0) > 0$.

• For $\chi \neq 0 \rightarrow \mathcal{G} \leq 0$ spin-induced scalarization for $f''(\phi_0) < 0$.

Scalarization in Black Holes

$$\mathcal{G}_{\text{Kerr}} = \frac{48M^2}{(r^2 + \chi^2)^6} \left(r^6 - 15r^4\chi^2 + 15r^2\chi^4 - \chi^6 \right)$$

• For $\chi = 0 \Rightarrow \mathcal{G} > 0$ scalarization requires $f''(\phi_0) > 0$.

• For $\chi \neq 0 \rightarrow \mathcal{G} \leq 0$ spin-induced scalarization for $f''(\phi_0) < 0$.

 \rightarrow In the minimal model satisfying the conditions above

$$\mathcal{L} = \left(1 + \frac{\beta\phi^2}{4}\right)R + X + \gamma \,G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi - \frac{\alpha\phi^2}{2}\mathcal{G} - \frac{1}{2}m_{\phi}^2\phi^2,\qquad(4)$$

where $X = -(\nabla \phi)^2/2$ is the scalar kinetic term.

Models of scalarization usually face a number of problems:

- 1. Neutron-star constraints
- 2. Stability (the exponential coupling yields stable solutions but does not satisfy our conditions)
- 3. Well posedness
- 4. Cosmological consistency

Is scalarization consistent with cosmology however?

 \rightarrow To answer this we need to study the theory in cosmological scales. We assume an FLRW metric and a barotropic cosmic fluid, $p_a = w_a \rho_a$, with the index a = r, m, de and $w_a = 1/3, -1, 0$ for radiation domination (RD), matter domination (MD) and dark energy domination (DED) respectively.

 \rightarrow We need to check whether or not there is a mechanism driving ϕ to zero at late cosmological times.

Is scalarization consistent with cosmology however?

 \rightarrow To answer this we need to study the theory in cosmological scales. We assume an FLRW metric and a barotropic cosmic fluid, $p_a = w_a \rho_a$, with the index a = r, m, de and $w_a = 1/3, -1, 0$ for radiation domination (RD), matter domination (MD) and dark energy domination (DED) respectively.

 \rightarrow We need to check whether or not there is a mechanism driving ϕ to zero at late cosmological times.

To avoid inconsistencies with cosmology, we assume a **sub-dominant scalar field**:

 $|
ho_{\phi}(\mathbf{z}_i)| \ll |
ho_{\mathbf{a}}(\mathbf{z}_i)|$

Evolution of scalars in a cosmological background¹:

•
$$\mathcal{L} = R + X - m_{\text{eff}}^2 \phi^2/2 \implies \mathcal{E}_{\phi} \propto e^{-t(3H - 2\omega)}$$

• $\mathcal{L} = R + X + f(\phi)\mathcal{G} \implies \mathcal{E}_{\phi} \propto e^{-\frac{3Ht}{2}}(C_1 e^{-\omega t} + C_2 e^{\omega t})$ for $f \sim \phi^2$

¹Franchini et al. Phys. Rev. D **101** (2020) 6, 064068

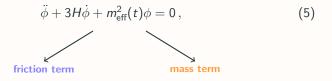
Evolution of scalars in a cosmological background¹:

•
$$\mathcal{L} = R + X - m_{\text{eff}}^2 \phi^2/2 \implies \mathcal{E}_{\phi} \propto e^{-t(3H - 2\omega)}$$

•
$$\mathcal{L} = R + X + f(\phi)\mathcal{G} \implies \mathcal{E}_{\phi} \propto e^{-\frac{3Ht}{2}}(C_1 e^{-\omega t} + C_2 e^{\omega t})$$
 for $f \sim \phi^2$

• $\mathcal{L} = R + h(\phi)R + X + f(\phi)\mathcal{G}$, let's see what happens for $f, h \sim \phi^2$

The scalar equation reads²

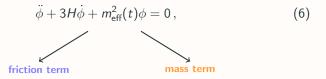


¹Franchini et al. Phys. Rev. D **101** (2020) 6, 064068

²Antoniou et al. Phys. Rev. D 103 (2021) No. 2, 024012

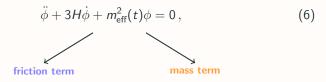
Cosmological attractor

The scalar equation reads ³



³Antoniou et al. Phys. Rev. D 103 (2021) No. 2, 024012

The scalar equation reads

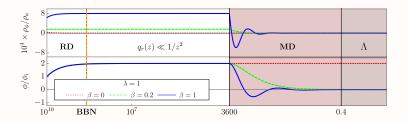


 \rightarrow We need to keep an eye on the sign of $\mathit{m}_{\rm eff}^2 = \beta R/2 - \alpha \mathcal{G}$:

	Radiation	Matter	Dark Energy
G	< 0	< 0	> 0
R	0	> 0	> 0

We do the analysis in terms of the redshift. We consider $\alpha = 1 > 0$ (initially) and $\phi_i \sim 1$ (not fine tuning) just before BBN.

$$\phi_a'' + f_a(z)\phi_a' + q_a(z)\phi_a = 0,$$
(7)



$\underline{\alpha > 0}$:

- ▶ For $\beta \leq 0$ no attractor behavior at late times
- $\blacktriangleright~$ For 0 $<\beta<\beta_{\it crit}$ the oscillator is underdamped \rightarrow no attractor
- For $\beta \ge \beta_{crit}$ critically or overdamped \rightarrow attractor! \checkmark

$\underline{\alpha > 0}$:

- ▶ For $\beta \leq 0$ no attractor behavior at late times
- $\blacktriangleright~$ For 0 $<\beta<\beta_{\it crit}$ the oscillator is underdamped \rightarrow no attractor
- For $\beta \ge \beta_{crit}$ critically or overdamped \rightarrow attractor! \checkmark

$\underline{\alpha < 0}$:

Spontaneous scalarization in the interior of neutron stars- makes no difference during BBN and at later times.

 \rightarrow For scalarized black holes we performed a perturbation analysis which showed that the black holes are stabilized!

 \rightarrow For scalarized black holes we performed a perturbation analysis which showed that the black holes are stabilized!

 \rightarrow For scalarized neutron stars we showed a significant suppression which is consistent with observations. \checkmark

 \rightarrow For scalarized black holes we performed a perturbation analysis which showed that the black holes are stabilized!

 \rightarrow For scalarized neutron stars we showed a significant suppression which is consistent with observations. \checkmark

ightarrow They hyperbolicity of the problem is improved. \checkmark

- Consistency with cosmology
- Avoidance of binary pulsar constraints
- Stable solutions
- Improved hyperbolicity

- Consistency with cosmology
- Avoidance of binary pulsar constraints
- Stable solutions
- Improved hyperbolicity

- Consistency with cosmology
- Avoidance of binary pulsar constraints
- Stable solutions
- Improved hyperbolicity

- Consistency with cosmology
- Avoidance of binary pulsar constraints
- Stable solutions
- Improved hyperbolicity

What did we see so far?

- Consistency with cosmology
- Avoidance of binary pulsar constraints
- Stable solutions
- Improved hyperbolicity

What else?

- Probe earlier cosmological times
- QNM modes need further exploration
- Deeper look into well-posedness

What did we see so far?

- Consistency with cosmology
- Avoidance of binary pulsar constraints
- Stable solutions
- Improved hyperbolicity

What else?

- Probe earlier cosmological times
- QNM modes need further exploration
- Deeper look into well-posedness

What did we see so far?

- Consistency with cosmology
- Avoidance of binary pulsar constraints
- Stable solutions
- Improved hyperbolicity

What else?

- Probe earlier cosmological times
- QNM modes need further exploration
- Deeper look into well-posedness

Thank you! Questions?