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Why test gravity?

● The standard ᴧCDM model of cosmology is built on the General Theory of 
Relativity (GR).

● This model has been very successful. However…

i. GR requires dark matter and dark energy in order to account for 
cosmological observations, and the fundamental nature of both remains 
unknown. 

ii. Aspects of cosmological data, such as the Hubble tension, hint at potential 
shortcomings of ᴧCDM.

iii. There remains an ultimate need for a quantum theory of gravity.



  

● The landscape of 
modified gravity is 
very vast. 

● It would be useful to 
constrain large 
regions of the 
landscape at once, 
rather than just test 
individual theories.

These considerations motivate us to consider modified theories of gravity.
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How to test gravity?

Small scales

● Solar System tests
● Laboratory tests
● Binary pulsars
● Gravitational waves

Large scales

● Weak lensing
● Galaxy clustering
● Background expansion
● CMB (ISW effect) 

The language used to study gravity in these two disparate regimes can be very different. 

How can we make the tests conducted in such different regimes talk to each other?



  

Theory-independent frameworks

N.B. Some theory-independent frameworks for cosmology do already exist, but have some drawbacks.

Requirements
➢Should apply in a wide range of physical settings.

➢Should allow us to constrain the overall theory landscape, rather than just one particular model.

➢Should be relatively insensitive to finer theoretical details.

➢Should be simple (more subjective...)!

Aim
Provide a framework for consistent tests of gravity over a wide range of length scales.



  

The parameterised post-Newtonian (PPN) framework

● Originally built to study astrophysical tests of gravity (Will & Nordtvedt 1972, Will 1993 
etc.)

● Has placed very tight constraints on modified gravity in the Solar System, encoded in 
a small, physically motivated set of parameters.

e.g.

● Because we build our cosmology from PPN, results in the cosmological regime will 
automatically be able to talk to results on small scales.

● PPN is valid for arbitrarily non-linear densities.



  

Why PPN needs adapting

● The classic PPN formalism is unsuitable for cosmology, because it assumes 
that

i. spacetime is asymptotically flat.

ii. All velocity scales are small compared to the speed of light.

iii. the PPN parameters are constant in time.

● None of these things are true on cosmological length or time scales. 



  

Building a cosmological model

Start from the description 
we have of gravity on small 
scales. Then stitch many 
small regions together to 
construct a cosmological 
model. 

We use the PPN formalism 
to describe small-scale 
gravity.

The matter content within all the small regions 
gives rise to global expansion at a rate given by 
generalised Friedmann equations.

Stitch using Israel junction conditions. Repeat for many regions

Inhomogeneous 
matter



  

Starting from the small scales
Small-scale perturbations to 

the Minkowski metric are 
related to post-Newtonian 

potentials by the PPN 
parameters.

Transform metric to FRW + Poisson 
gauge perturbations

Construct cosmological model by stitching many such small regions together 

Generalised Friedmann equations 

Cosmological gravity explicitly related to post-Newtonian gravity via the PPN parameters

Parameterised equations for 
small-scale perturbations, e.g.

N.B. unlike in classic PPN, ɣ may 
be a function of time. 



  

Accessing the large scales
● On scales larger than the horizon, an FRW metric with linear perturbations is 

equivalent to the metric of another exact FRW universe with perturbed coordinates 
(Bertschinger 2006).

● This observation gives generalised equations for large-scale perturbations, e.g.

● Perturbation evolution equations directly specified by the background equations. These 
are already obtained in our theory-independent framework in terms of PPN parameters.

All theory-independent

Theory of gravity only enters here



  

Putting it all together

Parametrisation functions have small and large-
scale limits given precisely in terms of 
(observationally accessible) PPN parameters

Small scales: post-
Newtonian analysis

Large scales: 
separate-universe 
analysis

● Generalised Friedmann 
equations

● Perturbation equations valid 
on all scales

Stitching procedure

Relate expansion to 

PPN parameters



  Preferred-frame effect term 
(0 in GR)

Modified-gravity “momentum” 
parameterisation functions (0 
in GR) 

Perturbation equations can all be related to PPN 
parameters in both the small and large-scale limits

Cosmological expansion

Perturbations

Smoothly join the limits together via 
parametrisation functions to get equations valid on 
all scales



  

Perturbations

Parametrisation functions transition smoothly between limits given by PPN parameters



  

A concrete example

PPNC equations explicitly 
calculated for
● Brans-Dicke theory
● Vector-tensor theories
● Quintessence DE models

see arXiv:2111.10860

Plots by Daniel Thomas

● Testing the validity of the 
formalism via simulations 
(Daniel Thomas, paper in 
prep). 

● Plots shown: Brans-Dicke 
theory evolved to the present 
day, with a constant potential 
and ω = 10. 
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limit satisfied



  

Summary

● There is a huge landscape of modified gravity theories one might wish to test.

● Theory-independent frameworks allow us to do this systematically. 

● We have developed such a framework that is suitable for use in cosmological tests of gravity.

● It is self-consistent, valid in the non-linear regime, and tied to PPN constraints.

● Future/possible extensions:
● Incorporation of theories with screening mechanisms
● PPNC equation for the “shear”
● Further study of the PPNC interpolation procedure

● Thanks for listening! Get in touch: Slack/t.j.anton@qmul.ac.uk/@TheoJAnton on Twitter



  

Blank slide



  

Technical details: Post-Newtonian formalism

In a region far smaller than the horizon, 
one can safely apply post-Newtonian 
expansion about Minkowski spacetime



  

Technical details: stitching procedure

Stitch using Israel junction conditions. Repeat for many regions

Consider the timelike 
boundaries of each region.
The intrinsic and extrinsic 
curvatures of those 
boundary surfaces must 
satisfy the Israel junction 
conditions:

Can be related to the 
post-Newtonian 
potentials, and therefore 
to the matter content

See arXiv:1503.08747 for rigorous details



  

Technical details: super-horizon scales

Approach used by 
Bertschinger (2006), 
arXiv:astro-ph/0604485

A universe consisting of an FRW background + small super-horizon  
(i.e. time-dependent only) perturbations is equivalent to a different 
exact FRW universe with perturbed coordinates.

Compare the line elements of the two “universes” to relate A and β to FRW metric perturbations 

Perturb the density in the same way to find , and matter 3-velocity

This gives Hamiltonian constraint, Raychaudhuri and momentum constraint equations for the scalar 
perturbations (similar treatment gives a momentum constraint for the divergenceless vector perturbation)

e.g. Raychaudhuri equation



  

Technical details: from perturbed Minkowski to perturbed FRW

where T is chosen such that the Poisson gauge condition is satisfied:



  

Technical details: Brans-Dicke example

Vary action → field equations → take post-Newtonian limit → obtain PPN parameters 
(and their PPNC extensions)

Plug these into the PPNC equations to get the Friedmann equations, and governing 
equations for the scalar and vector metric perturbations. 

“Sanity check”: linearise the equations. Can then verify that the linearised equations 
are identical to those obtained using the full cosmological perturbation theory 
machinery. But we know the PPNC equations are also valid on non-linear scales. 
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