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The dark energy problem: 
state of art 
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1. We live in an expanding universe.

2. Einstein equations. 

3. Our physical universe can be described by the RW metric.

4. Friedmann Equations 

5. Continuity 
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Observational evidence for cosmic acceleration
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The	Basic	Assumption	of	SNe	Ia cosmology
After	the	light	curve	correction,	
the	look-back	time	evolution	is	negligible?

Hubble	Residual	of	SNe	Ia &	Properties	of	Hosts
1.	Morphological	dependency
Early-type	galaxies	host	brighter	SNe	Ia
(ΔHR	~	0.16	mag.,	Hicken	et	al.	2009)	

2.	Mass	dependency
More	massive	galaxies	host	brighter	SNe	Ia
(ΔHR	~	0.08	mag.,	Sullivan	et	al.	2010)

Hubble	Residual	(HR)
� μSN – μz

(μ	:	distance	modulus)

What	is	the	Origin	of	Dependency?
→	Properties	of	Stellar	Population!?	

Perlmutter	(2003)
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What	is	the	Origin	of	Dependency?
→	Properties	of	Stellar	Population!?	

Perlmutter	(2003)

Two main sources of variability
1) Stretch: intrinsic variability 
2) Color: dust extinction

Supernovae are quasi-standard candles



Multiple Theoretical Models of Dark Energy

Development of statistical methods to extract maximum 
information from observations 

Constraints on theoretical models

↓

↓

What do we need to know?

SNe Ia data

Luminosity distance Redshift
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The usual way to do things…
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Dark energy 
equation of state 

Cosmological constant is the 
simplest candidate for DE ! = �1
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SDSS Collaboration (M. Betoule et al.).  Astron.Astrophys. 
568 (2014) A22  

PS1 and the Pantheon Sample 21

Table 8.

Analysis Model w ⌦m ⌦⇤

SN-stat ⇤CDM 0.284± 0.012 0.716± 0.012

SN-stat oCDM 0.348± 0.040 0.827± 0.068

SN-stat wCDM �1.251± 0.144 0.350± 0.035

SN ⇤CDM 0.298± 0.022 0.702± 0.022

SN oCDM 0.319± 0.070 0.733± 0.113

SN wCDM �1.090± 0.220 0.316± 0.072

Notes: Cosmological constraints for the SN-only sample
with and without systematic uncertainties. Values are given
for three separate cosmological
models: ⇤CDM, oCDM and wCDM.

dataset mainly to be in-line with general community re-
producibility. We still use the binned distances to gen-
erate the systematic covariance matrix, which is used as
a 2d 40-bin interpolation grid to create a covariance ma-
trix for the full SN dataset. Diagonal uncertainties from
the individual distances can be added together with the
full systematic matrix following Eq. 6. Di↵erences in
w between the binned and un-binned datasets are at
a < 1/16� level for the statistical measurements, and
< 1/8� when including the systematic covariance ma-
trix.
The cosmological fits to the SN-only sample are shown

in Table 8 with and without systematic uncertainties.
Using our full SN sample with systematic uncertainties,
with no external priors, we find ⌦m = 0.298 ± 0.022.
Without systematic uncertainties, the uncertainty on ⌦m

is roughly 2⇥ smaller. When not assuming a flat uni-
verse, we combine various probes together to constrain
the oCDM model. When using SN alone, we find that
⌦m = 0.319 ± 0.070 and ⌦L = 0.733 ± 0.113. We find
the evidence for non-zero ⌦⇤ from the SN-only sample
is > 6� when including all systematic uncertainties. As
shown in Fig. 18, this is a factor of ⇠ 20 improvement
over the Riess et al. (1998) constraints in this plane. Fur-
thermore, the significance for non-zero ⌦⇤ is much higher
than the < 3� e↵ect quoted by Nielsen et al. (2016)
which re-analyzed the B14 sample though their analy-
sis technique is disputed by (Rubin & Hayden 2016). A
study using the Pantheon sample and null tests done in
this analysis to examine non-standard cosmological re-
sults like those from Nielsen et al. (2016) and Dam et al.
(2017) is currently in prep. (Shafer et al. in prep.).
To evaluate the impact of the systematic uncertainties,

we combine constraints from the Pantheon SN sample
with those from the compressed likelihood of the CMB
from Planck Collaboration et al. (2016b) and measure
⌦m and w in the wCDM model. Constraints from BAO
and H0 measurements are included later in this section.
The impact of systematic uncertainties is shown in terms
of the relative size of the uncertainty of w in Table 9.

Figure 18. Evidence for dark energy from SN-only con-
straints. Here we show confidence contours at 68% and
95% for the ⌦m and ⌦⇤ cosmological parameters for
the oCDM model for both the Riess et al. (1998) dis-
covery sample and the Pantheon sample. The Pantheon
constrains with systematic uncertainties are shown in red
and with only statistical uncertainties are shown in gray
(line).

We find that the systematic uncertainty (�w = 0.025)
is smaller than the statistical uncertainty (�w = 0.031).
Unlike previous analyses (e.g., B14 and S14) that found
that calibration uncertainties made up > 80% of the sys-
tematic error budget, we find a more even split between
the various systematics. The calibration uncertainties
are due to uncertainties of the individual photometric
systems of each sample as well as the calibration uncer-
tainties propagated through the SALT2 model. We find
that the SALT2 calibration uncertainty is larger in mag-
nitude than the combined impact from all the various
systems, which are reduced by S15 and are independent
of each other. Still, all of the systematic uncertainties
related to calibration have a net e↵ect of roughly 66% of
the total systematic error.
The systematic uncertainties increase the uncertain-

ties of the best fit parameters, and also shift the best fit
parameters by reweighting the pulls of each SN in the
fit. These two impacts are shown in Table 9 as both
the best-fit value of w is shifted and the uncertainty on
w is increased. The shifts are mainly due to systematic
uncertainties that most strongly a↵ect the low-z sample:
calibration, MW extinction, intrinsic-scatter and selec-
tion.

D.M. Scolnic, et al., Astrophys.J. 859 (2018) no.2, 101 

Huge progress from 1998

Planck 2018 results. VI. Cosmological parameters 
Astron.Astrophys. 641 (2020) A6

99



Why do we want more cosmological probes?

- Each cosmological probe is characterized by possible systematics.

Different distribution in the z Different sensitivity constraining 
cosmological parameters

10

- A contribution from alternative distance indicators covering a wide range of 
redshifts is key to improve cosmological distance determinations:



GRBs as cosmological probe 
—properties—

11



12

Gamma-ray Bursts

GRBs are the most powerful high-energy events known in the Universe.

Credit: NASA



Gamma-ray Bursts as cosmological probe
 
The highest redshifts recorded lie at z = 8.2 (GRB090423) (Salvaterra et al. 
2009; Tanvir et al. 2009) and z = 9.4 (GRB090429) (Cucchiara et al. 2011). 

Credits: NASA/DOE/Fermi LAT CollaborationCredits: NASA's Goddard Space Flight Center and 2MASS/J. 
Carpenter, T. H. Jarrett, and R. Hurt
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Gamma-ray Bursts properties

We define a gamma-ray burst based on its observational properties: an 
intense flash of gamma rays, lasting from a fraction of a second to up to a 
few minutes.

https://imagine.gsfc.nasa.gov/science/objects/bursts1.html

Two types: 
Short GRBs (t<2s)
Long GRBs (t>2s)

Model:
NS-NS mergers: SGRBs
Massive star collapse: LGRBs

14



Gamma-ray Bursts as distance indicators

The main advantage of GRBs over SNe Ia is that they span a much greater 
redshift range.

The main disadvantage is that the calibration of GRBs depends of a 
cosmological model a priori.

Long duration gamma-ray bursts (LGRBs) have luminosity relations which are 
connections between observable properties of the -ray emission with the 
luminosity or energy (see e.g., Schaefer and Collazi 2007).

γ

15



Gamma-ray Bursts luminosity relations

Bradley E. Schaefer,  Astrophys.J. 660 (2007) 16-46 
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Lorenzo Amati et al. Mon.Not.Roy.Astron.Soc. 486 (2019) 1, L46-L51

Amati relation



� Amati, Frontera & Guidorzi (2009), Amati & Della Valle (2013): the normalization 
of the correlation varies only marginally using GRBs with known redshift 
measured by individual instruments with different sensitivities and energy bands 

Amati  & Della Valle 2013

Ep – Eiso correlation for GRBs with known redshift has been confirmed and 
extended by measurements of several GRB detectors with spectral capabilities:

: peak energy of the spectrum

Amati & Della Valle,Int.J.Mod.Phys. D22 (2013) 

: isotropic energy

Amati relation

18

Ep
Eiso



➡ Because different GRBs detectors are characterized by different detection 
and spectroscopy sensitivity as a function of GRB intensity and spectrum, we 
consider data exclusively from a single catalogue (the Fermi-GBM), which 
prevents selection biasses and other instrument-associated systematics. 

Our contribution

➡ Present a new and independent dataset of GRBs calibrated in a 
cosmological independent way.

➡ Moreover, to avoid extra bias, we select only GRBs with redshift 
determined through spectroscopic methods. 

19
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The sample: 74 GRBs
The GRBs spectrum is mainly, but not exclusively, described in terms of an 
empirical spectral function, the Band function 

The BAT instrument of Swift satellite is limited to energies up to 150 keV: is not 
possible to obtain directly the flux and luminosity of many GRBs.

FERMI allows for the determination of all the spectral parameters in the 
Band function. 



21

We limit our sample to those GRBs with redshift determined through 
spectroscopic methods either from the afterglow or from the host galaxy. 

Our sample of 74 GRBs cover the redshift range 0.117 ≤ z ≤ 5.283.



Calibration of GRBs
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Calibration independent of the cosmological model

1

STEPS

The isotropic energy Eiso:

1.1 We need the luminosity distance 

1.2 We employed a Bézier parametric curve of degree 2:

Amati relation

23
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LSbolo(1 + z)−1
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1.3
We use Hubble parameter data reported by Capozziello et al. (2018), which 
comes from the Cosmic Chronometers approach to build a Bézier curve of 
degree n=2:  

 parameters obtained by adding to the measurement error of the Hubble 
parameter data, the maximum bias reported in Moresco et al. (2020).
β′ s

H2(z) = β0h0
2(z) + β1h1

2(z) + β2h2
2

24



2 Insert the calibrated luminosity distance

3 Fit the Amati relation 

into the :Ecal
iso

A = 1.8355 ± 0.2403
B = 48.3934 ± 0.6551

25
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4 Calculate the distance modulus for each GRBs and perform the 
corresponding error propagation:

26

μGRB = 5 log(dcal
L /Mpc) + 25



Impact of GRBs on Dark 
Energy constraints

27



Where the dark energy density function X(z) is defined as X(z) ⌘ ⇢X(z)

⇢(0)
<latexit sha1_base64="D2ckXhOXQh644cJeyCu3WTNszPQ=">AAACCHicbVA7T8MwGHR4lvIKMLJYVJXapUoKEowVLIxFog+pqSrH/dJYdR7YTqUS5Q/An4EJARszf4B/gxs6QMtN57uz9N25MWdSWdaXsbK6tr6xWdgqbu/s7u2bB4dtGSWCQotGPBJdl0jgLISWYopDNxZAApdDxx1fzfzOBIRkUXirpjH0AzIKmccoUVoamOVu5b6KHbhL2AQ7niA0dYQfDWZyltOKVc0GZsmqWTnwMrHnpITmaA7MT2cY0SSAUFFOpOzZVqz6KRGKUQ5Z0UkkxISOyQh6moYkANlP8zoZLnuRwMoHnL9/Z1MSSDkNXJ0JiPLlojcT//N6ifIu+ikL40RBSHVEe17CsYrwbBU8ZAKo4lNNCBVMX4mpT/QaSm9X1PXtxbLLpF2v2ae1+s1ZqXE5H6KAjtEJqiAbnaMGukZN1EIUPaJn9IbejQfjyXgxXn+iK8b8zxH6A+PjG1WomNQ=</latexit>

With

In this work we studied

1. CDM: 

3. wCDM:

5. CPL parametrization:

Λ

Impact of GRBs on Dark Energy constraints

28

H2(z) = H2
0[Ωm(1 + z)3 + ΩXX(z)]

ρX(z) = exp (∫
z

0
dz′ 

3[1 + w(z′ )]
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ω = − 1
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CLASS I: Overview, by J. Lesgourgues, arXiv:1104.2932 
[astro-ph.IM], http://class-code.net Thejs Brinckmann, Julien Lesgourgues, arXiv:1804.07261

http://baudren.github.io/montepython.html

Data and methods

+

+

Observational data

4 Author et al.

Survey zBAO Measurement

6DF 0.106 rs/DV

SDSS DR7 MGS 0.15 DV /rs

SDSS DR12 galaxies 0.38, 0.51, 0.61 DA/rs, DH /rs

Table 1. BAO measurements from various surveys, Beutler et al. (2011);
Ross et al. (2015); Alam et al. (2017), adopted in this work.

5 OBSERVATIONAL DATA

5.1 Type Ia Supernovae (SNe Ia)
One of the latest SNe Ia data compilation is the Pantheon sample
Scolnic et al. (2018) which consists of 1048 SNe with the red-
shift spanning 0.01 < z < 2.3. This sample is a combination of
365 spectroscopically confirmed SNe Ia discovered by the Pan-
STARRS1(PS1) Medium Deep Survey together with the subset of
279 PS1 SNe Ia (0.03 < z < 0.68) with distance estimates from
SDSS, SNLS and several low-z and Hubble Space Telescope sam-
ples (see Table 4 in Scolnic et al. (2018)). In order to perform our
analysis, we choose this dataset and use it in the usual manner to
define

χ2
SN = ∆µ · C−1 · ∆µ, (10)

where C is the full systematic covariance matrix and ∆µ =
µtheo−µobs is the vector of the differences between the observed and
theoretical value of the observable quantity for SNe Ia, the distance
modulus, µ. It is worth mentioning that in our analysis the absolute
magnitude is taken as nuisance parameter.

5.2 Baryon Acoustic Oscillations (BAO)
We used the low redshift galaxy BAO data listed in Table 1. These
datasets provide measurements of three types of ratios of comoving
distance: the angular scale of the BAO (DA(z)/rs), the redshift-space
BAO scale (DH (z)/rs) Alam et al. (2017), and the spherically-
averaged BAO scale (DV (z)/rs) Beutler et al. (2011); Ross et al.
(2015) being rs the comoving sound horizon at the end of the baryon
drag epoch given by

rs =
∫ ∞

zd

cs(z)
H(z) dz, (11)

where cs denotes the sound speed in the primordial photon-baryon
plasma given by cs = 3−1/2c[1 + 3

4 ρb(z)/ργ(z)]−1/2. DH (z) =
c/H(z), DA(z) is the comoving angular diameter distance

DA(z) = c
∫ z

0

dz′

H(z′) , (12)

and DV (z) is the spherically averaged combination of transverse
and radial BAO modes,

DV (z) =
[
zDH (z)D2

A(z)
]1/3
. (13)

Thus, the corresponding χ2
BAO for BAO data is given by

χ2
BAO = ∆FBAO · C−1

BAO · ∆FBAO, (14)

where ∆FBAO = Ftheo − Fobs is the difference between the ob-
served and theoretical value of the observable quantity for BAO
which can be different depending on the considered survey and
C−1
BAO is the respective inverse covariance matrix.

5.3 Cosmic Microwave Background (CMB)
Instead of the full data of the CMB anisotropies, we used CMB
data in the condensed form of shift parameters reported in Chen
et al. (2019), which were derived from the last release of the Planck
results Aghanim et al. (2018). Clearly, the analysis proceeds much
faster in this way than by performing an analysis involving the full
CMB likelihood.

These shift parameters, (R, lA,Ωbh2,ns) provide an efficient
summary of CMB data as far as dark energy constraints are con-
cerned (as it has been argued in several works Kosowsky et al.
(2002); Wang & Mukherjee (2007); Mukherjee et al. (2008); Ade
et al. (2016)) which can be used to study models with either non-
zero curvature or a smooth DE component, as in our case, but not for
modifications of gravity Mukherjee et al. (2008); Ade et al. (2016).

The first two quantities in the vector (R, lA,Ωbh2,ns) are de-
fined as

R ≡
√
ΩmH2

0
r(z∗)

c
, (15)

lA ≡ π r(z∗)
rs(z∗)

, (16)

where r(z) is the comoving distance and rs(z) is the comoving sound
horizon, both evaluated at photon-decoupling epoch z∗.

The corresponding χ2 for the CMB is

χ2
CMB = ∆FCMB · C−1

CMB · ∆FCMB, (17)

where FCMB = (R, lA,Ωbh2,ns) is the vector of the shift param-
eters and C−1

CMB is the respective inverse covariance matrix. The
mean values for these shift parameters as well as their standard de-
viations and normalized covariance matrix are taken from Table 1
of Chen et al. (2019).

5.4 Gamma-Ray Bursts (GRBs)
We used two samples. The first one consists on 193 GRBs calibrated
in Amati et al. (2019) which cover the redshift range 0.03351 ≤ z ≤
8.1. The second sample consists of 81 Fermi-GRBs between the
redshift range 0.117 ≤ z ≤ 5.283 calibrated in a model independent
way in this work.

The χ2 function for the GRBs data is defined similarly to the
SNe Ia data, Eq. 10, as

χ2
GRBs = ∆µ · C−1 · ∆µ, (18)

where C is a diagonal matrix containing σ2
µ and ∆µ = µtheo −

µestimated is the vector of the differences between the theoretical
and estimated value of the distance modulus for the GRBs.

6 RESULTS AND DISCUSSION
In Section 3, assuming H(z) data as our calibration source at low
redshifts, a new calibrated GRBs data set has been generated in
order to be considered as standard candles.

We have obtained the constraints for the ΛCDM, wCDM and
CPL models with the latest observational data of SNe Ia, BAO,
Planck compressed 2018 including the 193 GRBs calibrated by
Amati et al. (2019) and the 81 GRBs calibrated in this work. For
comparison, SNe Ia + BAO + Planck compressed 2018 without
GRBs have been also used to show which is the contribution of
GRBs to the joint cosmological constraints.

MNRAS 000, 1–6 (2018)
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viations and normalized covariance matrix are taken from Table 1
of Chen et al. (2019).

5.4 Gamma-Ray Bursts (GRBs)
We used two samples. The first one consists on 193 GRBs calibrated
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8.1. The second sample consists of 81 Fermi-GRBs between the
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way in this work.
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µestimated is the vector of the differences between the theoretical
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6 RESULTS AND DISCUSSION
In Section 3, assuming H(z) data as our calibration source at low
redshifts, a new calibrated GRBs data set has been generated in
order to be considered as standard candles.

We have obtained the constraints for the ΛCDM, wCDM and
CPL models with the latest observational data of SNe Ia, BAO,
Planck compressed 2018 including the 193 GRBs calibrated by
Amati et al. (2019) and the 81 GRBs calibrated in this work. For
comparison, SNe Ia + BAO + Planck compressed 2018 without
GRBs have been also used to show which is the contribution of
GRBs to the joint cosmological constraints.
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Dark energy models we are studying here

1. CDM: 

3. wCDM:

5. CPL parametrization:

Λ

ω = ω0 + ωa
z

1 + z

Dark Energy Models



A. Montiel, José Ignacio Cabrera, Juan Carlos Hidalgo, Mon.Not.Roy.Astron.Soc. 501 (2021) 3, 3515-3526

Results
1. CDM modelΛ

Our results, either including GRBs(1), GRBs(2- no sys) or GRBs(2-sys), 
are consistent with the ones reported by Amati et al. (2019) only at 2σ. 
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Results
2. wCDM model

Results of Amati et al. (2019):

A. Montiel, José Ignacio Cabrera, Juan Carlos Hidalgo, Mon.Not.Roy.Astron.Soc. 501 (2021) 3, 3515-3526
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2. wCDM model

A. Montiel, José Ignacio Cabrera, Juan Carlos Hidalgo, Mon.Not.Roy.Astron.Soc. 501 (2021) 3, 3515-3526
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Results
3.CPL model

A. Montiel, José Ignacio Cabrera, Juan Carlos Hidalgo, Mon.Not.Roy.Astron.Soc. 501 (2021) 3, 3515-3526

The parameter values fitting the new sample of GRBs favours the ΛCDM model 
more than the other two cases.
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3.CPL model

A. Montiel, José Ignacio Cabrera, Juan Carlos Hidalgo, Mon.Not.Roy.Astron.Soc. 501 (2021) 3, 3515-3526
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To take home…
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What did we find?
We have carefully selected a sample of 74 GRBs as tracers of the 
luminosity distance. 

We find consistency with previous works for ΛCDM and ωCDM 
models at 1σ in the posterior contours of the relevant parameters, with 
the bonus of a much tighter confidence region for the parameters.

GRBs can be used as standard candes. We argue in favour of our 
analysis when considering GRBs and other luminosity distance probes.
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What’s next?
Because the ΛCDM model is  still 
poorly tested in the redshift 
interval between the farthest 
observed type Ia supernovae  and 
the CMB, we are interested in 
extend the previous approach to 
q u a s a r s ( Q U A S i - s t e l l A R 
objects). 

Quasars are the most luminous 
p e r s i s t e n t s o u r c e s i n t h e 
Universe, observed up to redshifts 
of z ≈ 7.5 ( E. Bañados et al. 
Nature 553, 473–476 (2018)).
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log(LX) = γ log(LUV) + β

Guido Risaliti, Elisabeta Lusso, Nature Astron. 3 (2019) 3, 272-277

The problem is that they obtained the luminosities assuming the standard ΛCDM 
cosmological model with ΩM = 0.3, ΩΛ = 0.7 
➡ We are interested in calibrated them in a cosmological independent way (Work in 
collaboration with Sofía del Pilar Samario,  José Ignacio Cabrera and Juan Carlos Hidalgo)
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From the nonlinear relation between  and  and because 
:

LX LUV
L = 4πD2

LF

.  and  are measured at fixed rest-frame wavelengths. β′ = β + (γ − 1)log(4π) FX FUV
2 Author et al.

estos asociados a la fusión de objetos compactos. El espectro de los
GRBs normalmente se describe por una funcion especrtral empirica
llamada la función de Band (Band et al. 1993), descrita como

f (E) =




N0

(
E

100keV

)α
exp

(
− E

E0

)
E ≤ Eb

N0

(
E0(α − β)
100keV

)(α−β)
exp(β − α)

(
E

100keV

)β
E > Eb

(1)

con Eb = (α − β)E0, en el espectro aparece un pico, la energía
asociada a este pico se conoce como energía de pico (Ep) que se
obtiene de los parametros espectrales como Ep =E0(2 + α)

Los GRBs son las explosiones mas potentes en el universo,
por lo cual pueden ser observados a altos corrimientos al rojo (Sal-
vaterra et al. 2009). Para determinar la energía radiada por un GRB
es indispensable conocer la distancia a la que se encuentra. Al ser
objetos que estan a distancias cosmologicas, la distancia se deter-
mina con el corrimiento al rojo (the luminosity distance), que se
obtienen de la radiación generada despues los pulsos de rayos γ
llamada afterglow, esta radiación se genera en bandas menos ener-
geticas desde rayos X hasta radio. El corrimiento al rojo se puede
estima por lineas espectrales de emision o absorción o por metodos
fotometricos, pero las determinaciones fotometricas son mas inpre-
sisas. No siempre es posible determinar el corrimiento al rojo de un
GRB, ya que la intensidad del afterglow decae con el tiempo, asi
que aunque los intrumentos en rayos γ detecten un GRB, si no se
apuntan otros telescopios en otras bandas rapidamente, el redshift
no se puede estimar.

2.1 Sample
Existen bases de datos de varios instrumentos dedicados a GRBs,
de las cuales la que tiene mas objetos con redshift el la del satelite
SWIFT, pero el instrumento BAT de SWIFT solo puede observar
hasta energias de 150 keV (Gehrels et al. 2004), pero la Ep promedio
para los GRBs es mayor al limite de energía de BAT (Kaneko et al.
2006), por esta razon para muchos GRBs BAT no puede determinar
todos los parametros espectrales de una funcion de Band o de una
cut off power law, con lo cual no es posible determinar los flujos ni
las luminosidades para muchos GRBs observados por SWIFT.

Fermi cuenta con dos instrumentos GBM y LAT, GBM es un
instrumento dedicado a GRBs en el rango de energías de 8 keV a
40 MeV (Meegan et al. 2009), mientras que LAT es un calorimetro
que tiene un rango espectral entre 100 MeV y 300 GeV (Atwood
et al. 2009)

FERMI data were taken from the FERMI-GBM catalog (Gru-
ber et al. 2014; von Kienlin et al. 2014)

3 CALIBRATION
Most calibrations of GRBs take for granted a particular cosmologi-
cal model. Among the attempts to remedy this circularity problem
can be found the proposals consisting in calibrating at low redshifts
using the SNe Ia data, so mending the few available low redshift
GRBs data, and then interpolate it to ... made by Liang et al. (2008);
Kodama et al. (2008) ...

Here we followed a recent proposal of a calibration model-
independent made by Amati et al. (2019). We shall apply the em-
pirical relation Ep − Eiso that connects Ep = Ep,obs(1 + z) with

the isotropic equivalent energy Eiso derived by Amati et al. (2002,
2008),

Eiso(z) = 4πd2
L(z)Sbolo(1 + z)−1, (2)

where Sbolo is the bolometric fluence of gamma rays in the GRB
at redshift z, the factor (1 + z)−1 transforms the observed GRB
duration into the source cosmological rest-frame one and dL(z) is
the luminosity distance of the GRB given by

dL(z) = c(1 + z)
∫ z

0

dz′

H(z′) . (3)

Clearly, from the above equation it can be seen that the calibration
of GRBs depends on the cosmological model.

Making use of the cosmic chronometers approach Jimenez
& Loeb (2002); Moresco (2015), which provides an independent
technique to constrain the expansion history of the Universe H(z)
from the differential evolution of massive and passive early-type
galaxies, Amati et al. (2019) approximated these Hubble parameter
data by employing a Bézier parametric curve of degree n given by

Hn(z) =
n∑

d=0
βdhdn (z), hdn ≡ n!(z/zm)d

d!(n − d)!

(
1 − z

zm

)n−d
, (4)

where βd are coefficients of the linear combination of Bernstein
basis polynomials hdn (z), positive in the range 0 ≤ z/zm ≤ 1, with
zm the maximum z of the Hubble parameter dataset which consists
of 31 measurements of Hubble parameter taken from Capozziello
et al. (2018). In particular, Amati et al. (2019) considered a Bézier
curve of degree n = 2 in order to obtain a monotonic growing
function in such way that with d = 0 and z = 0 it can be identify
β0 = H0.

By employing the dataset of Hubble parameter reported in
Capozziello et al. (2018), it is performed a non-linear least-squares
minimization by using the Python software package lmfit Newville
et al. (2014). The best-fit parameters that we obtained for the Bézier
curve with n = 2 given by

H2(z) = β0h0
2(z) + β1h1

2(z) + β3h1
2(z), (5)

are β0 = H0 = 67.7652 ± 3.6864, β1 = 102.9455 ± 10.8574 and
β2 = 208.7820 ± 14.1192 all in units of km s−1Mpc−1. In addi-
tion, the correlations between these parameters were also obtained:
C(β0, β1) = −0.839, C(β1, β2) = −0.702 and C(β0, β2) = 0.507.
The best-fit with its 1σ confidence region are shown in Fig. 1. It is
worth to mention these values are in agreement with the previous
estimation made by Amati et al. (2019).

The next step consists in extrapolate the function H2(z) to
redshift z > zm to construct the luminosity distance dcal

L (z), i.e.,

dcal
L (z) = c(1 + z)

∫ z

0

dz′

H2(z′)
, (6)

and therefore the isotropic energy Ecal
iso = 4π(dcal

L (z))2Sbolo(1+z)−1.
In order to obtain the respective errors σEcal

iso , the σdL
is calculated

by taking into account the correlations between the parameters β’s
besides the GRBs systematics on the observables. The correspond-
ing Ep − Ecal

iso distribution is shown in Fig. 2.
In order to calibrate the Amati relation for the sample of 81

Fermi-GRBs between the redshift range 0.117 ≤ z ≤ 5.283, a
Python module for performing robust linear regression on data
points where both variables have measurement errors was em-
ployed. The fitting method is the bivariate correlated errors and
intrinsic scatter (BCES) that follows Akritas & Bershady (1996). In
particular, this method is useful when it is not clear which variable
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By employing the Bézier parametric curve of degree 2: 

We obtained the luminosity distance for quasars 
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2

… CALIBRATION

We fit the nonlinear relation between  and  in order to obtain : LX LUV β, γ

log(LX) = γ log(LUV) + β

3 We estimate a distance modulus for each quasar on the sample

4 Quasars can be use for cosmological purposes. 
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Preliminary results

Guido Risaliti, Elisabeta Lusso, Nature Astron. 3 (2019) 3, 272-277 Sofía Samario, Juan Carlos Hidalgo, Ignacio Cabrera and A. Montiel (2022)

γ = 0.633 ± 0.002 γ = 0.630 ± 0.016
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Low redshift cosmological probes

SNe Ia & Dark Energy

SNe Ia⇒ Thermonuclear explosion in C+O white dwarf
Strong correlation between peak magnitude & light curve shape
→ calibrated candles

Ujjaini Alam, LANL (IAP, Paris, Sept 5, 2011)

Supernovae data set

algorithm with the capability of providing robust and realistic constraints on cosmological
model parameters.

By using the publicly available Monte Python [42] package, we perform a likelihood
analysis in which we minimize the �

2 function thus obtaining the best fit of model parame-
ters from observational data. This minimization is equivalent to maximizing the likelihood
function L(✓) / exp[��

2(✓)/2] where ✓ is the vector of model parameters. The expression
for �

2(✓) depends on the used dataset. In what follows we briefly describe the probes and
samples.

3.1 Type Ia Supernovae (SNe Ia)

We used the SNe Ia data from the Pantheon compilation [43]. This set is made of 1048 SNe
covering the redshift range 0.01 < z < 2.26. As is usual, the comparison with SNe Ia data is
made via the standard �

2 statistics given by

�
2
SN = �µ · C�1 · �µ, (3.1)

where C is the covariance matrix and �µ = µtheo�µobs is the vector of the di↵erences between
the observed and theoretical value of the observable quantity for SNe Ia, the distance modulus
µ. For the Pantheon sample, C captures all identified systematic errors besides to the statistic
errors of the SNe Ia data and µ is defined by

µ(z, ✓) = 5 log10 [dL(z, ✓)] + µ0, (3.2)

where dL(z, ✓) is the dimensionless luminosity distance given by

dL(z, ✓) = (1 + z)

Z z

0

dz
0

E(z0, ✓)
, (3.3)

with E(z, ✓) = H(z, ✓)/H0 the dimensionless Hubble function, H0 the Hubble constant and
✓ the free parameters of the cosmological model.

In Eq. (3.2) µ0 is a nuisance parameter that depends on both the absolute magnitude
of a fiducial SN Ia and the Hubble constant. Here, we marginalize the �

2
SNeIa over µ0.

3.2 Observational Hubble Data (OHD)

The observational Hubble parameter H(z) data provide a direct measurement of the Hubble
parameter, instead of its integral like the SNe Ia or the Baryon Acoustic Oscillations (BAO)
probes.

So far the main complication of the OHD data is the number of data points available
in comparison with SNe Ia luminosity distance data. However, we think the OHD data can
help break the parameter degeneracies and shed light on the cosmological scenarios that are
being studied.

In this work, we use 30 data points from di↵erential evolution of passively evolving early-
type galaxies used as cosmic chronometers in the redshift range 0.07  z  1.965 reported
in [44].

The corresponding �
2
OHD estimator is defined as

�
2
OHD =

30X

j=1

[Hth(zj , ✓) � Hobs(zj)]
2

�
2
Hobs

(zj)
, (3.4)

with �
2
Hobs

the measurement variances and ✓ the vector of the cosmological background
parameters.
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Baryon Acoustic 
oscillations

3.3 Baryon Acoustic Oscillations

The corresponding �
2
BAO for Baryon Acoustic Oscillations (BAO) is given by

�
2
BAO = �FBAO ·C�1

BAO · �FBAO
, (3.5)

where �FBAO = Ftheo � Fobs is the di↵erence between the observed and theoretical value
of the observable quantity for BAO and can be di↵erent depending on the considered survey
and C�1

BAO is the inverse covariance matrix of the data.
We used data from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) DR12,

described in [45] and expressed as

DM (z)
r
fid
s (zd)

rs(zd)
and H(z)

rs(zd)

r
fid
s (zd)

, (3.6)

where rs(zd) is the sound horizon evaluated at the dragging redshift zd; and r
fid
s (zd) is the

same sound horizon but calculated for a given fiducial cosmological model used, being equal
to 147.78 Mpc [45].

Currently BAO is considered a promising standard ruler to use in cosmology enabling
precise measurements of the distance ratio, DV /rs, the distance to objects at redshift z in
units of the sound horizon at recombination, independently of the local Hubble constant.
The observed angular and radial BAO scales at redshift z provide a geometric estimate of
the e↵ective distance,

DV (z) ⌘
⇥
(1 + z)2D2

A(z)cz/H(z)
⇤1/3

, (3.7)

where DA(z) is the angular diameter distance and H(z) is the Hubble parameter. The
measured ratio DV /rs, with rs being the comoving sound horizon scale at the end of the
drag epoch, is what can be compared to theoretical predictions.

Since the release of the seven-year WMAP data, the acoustic scale measurement has
been improved by the Sloan Digital Sky Survey (SDSS) and SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS) galaxy surveys, and by the WiggleZ and 6dFGS surveys. An
upgraded estimate of the acoustic scale in the SDSS-DR7 data was made in [? ], giving
DV (0.35)/rs = 8.88 ± 0.17, and reducing the uncertainty from 3.5% to 1.9%. More recently,
the SDSS-DR9 data from the BOSS survey has been used to estimate the BAO scale of the
CMASS sample. In this last case, in [? ] was reported DV (0.57)/rs = 13.67 ± 0.22 for
galaxies in the range 0.43 < z < 0.7 (at an e↵ective redshift z = 0.57). On the other hand,
the acoustic scale has also been measured at higher redshift using the WiggleZ galaxy survey.
In [? ] was reported distances in three correlated redshift bins between 0.44 and 0.73. At
lower redshift, z = 0.1, a detection of the BAO scale has been made using the 6dFGS survey,
see [? ]. To perform our analysis we employed the data described before; a summary of these
measurements can be found in Table 1 of [? ].

3.4 Cosmic Microwave Background (CMB)

We also use the CMB data reported in [? ], where distance priors are derived from the first
release of the Planck results.

CMB data provide the comoving distance to the photon-decopling surface r(z⇤), z⇤ =
1090, and the comoving sound horizon at photon-decopling epoch rs(z⇤) which are defined
as,

r(z⇤) =
c

H0

Z z⇤

0

dz
0

E(z0)
, (3.8)
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to 147.78 Mpc [45].

Currently BAO is considered a promising standard ruler to use in cosmology enabling
precise measurements of the distance ratio, DV /rs, the distance to objects at redshift z in
units of the sound horizon at recombination, independently of the local Hubble constant.
The observed angular and radial BAO scales at redshift z provide a geometric estimate of
the e↵ective distance,

DV (z) ⌘
⇥
(1 + z)2D2

A(z)cz/H(z)
⇤1/3

, (3.7)

where DA(z) is the angular diameter distance and H(z) is the Hubble parameter. The
measured ratio DV /rs, with rs being the comoving sound horizon scale at the end of the
drag epoch, is what can be compared to theoretical predictions.

Since the release of the seven-year WMAP data, the acoustic scale measurement has
been improved by the Sloan Digital Sky Survey (SDSS) and SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS) galaxy surveys, and by the WiggleZ and 6dFGS surveys. An
upgraded estimate of the acoustic scale in the SDSS-DR7 data was made in [? ], giving
DV (0.35)/rs = 8.88 ± 0.17, and reducing the uncertainty from 3.5% to 1.9%. More recently,
the SDSS-DR9 data from the BOSS survey has been used to estimate the BAO scale of the
CMASS sample. In this last case, in [? ] was reported DV (0.57)/rs = 13.67 ± 0.22 for
galaxies in the range 0.43 < z < 0.7 (at an e↵ective redshift z = 0.57). On the other hand,
the acoustic scale has also been measured at higher redshift using the WiggleZ galaxy survey.
In [? ] was reported distances in three correlated redshift bins between 0.44 and 0.73. At
lower redshift, z = 0.1, a detection of the BAO scale has been made using the 6dFGS survey,
see [? ]. To perform our analysis we employed the data described before; a summary of these
measurements can be found in Table 1 of [? ].

3.4 Cosmic Microwave Background (CMB)

We also use the CMB data reported in [? ], where distance priors are derived from the first
release of the Planck results.

CMB data provide the comoving distance to the photon-decopling surface r(z⇤), z⇤ =
1090, and the comoving sound horizon at photon-decopling epoch rs(z⇤) which are defined
as,

r(z⇤) =
c

H0

Z z⇤

0

dz
0

E(z0)
, (3.8)
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⇤CDM Planck TT, TE, EE + lowE R lA ⌦bh
2

ns

R 1.7502± 0.0046 1.0 0.46 �0.66 �0.74

lA 301.471+0.089
�0.090 0.46 1.0 �0.33 �0.35

⌦bh
2 0.02236± 0.00015 �0.66 �0.33 1.0 0.46

ns 0.9649± 0.0043 �0.74 �0.35 0.46 1.0

wCDM Planck TT, TE, EE + lowE R lA ⌦bh
2

ns

R 1.7493+0.0046
�0.0047 1.0 0.47 �0.66 �0.71

lA 301.462+0.089
�0.090 0.47 1.0 �0.34 �0.36

⌦bh
2 0.02239± 0.00015 �0.66 �0.34 1.0 0.44

ns 0.9653+0.0043
�0.0044 �0.72 �0.36 0.44 1.0

⇤CDM+⌦k Planck TT, TE, EE + lowE R lA ⌦bh
2

ns

R 1.7429± 0.0051 1.0 0.54 �0.75 �0.79

lA 301.409± 0.091 0.54 1.0 �0.42 �0.43

⌦bh
2 0.02260± 0.00017 �0.75 �0.42 1.0 0.59

ns 0.9706+0.0047
�0.0050 �0.79 �0.43 0.59 1.0

⇤CDM+AL Planck TT, TE, EE + lowE R lA ⌦bh
2

ns

R 1.7428± 0.0053 1.0 0.52 �0.72 �0.80

lA 301.406+0.090
�0.089 0.52 1.0 �0.41 �0.43

⌦bh
2 0.02259± 0.00017 �0.72 �0.41 1.0 0.58

ns 0.9707± 0.0048 �0.80 �0.43 0.58 1.0

Table 1. The 68% C.L. limits for R, lA, ⌦bh
2 and ns in di↵erent cosmological models and their

correlation matrix for from Planck 2018 TT, TE, EE + lowE. Notice that the Planck collaboration
use Planck TT, TE, EE+lowE to represent the combination of the combined likelihood of TT,
TE, EE spectra at l � 30, the low-l temperature Commander likelihood and the low-l SimAll EE
likelihood [13].

We modify the MCMC chains package CosmoMC [30] by adding �
2

distance priors
, which

is given by

�
2

distance priors =
X

(xi � di)(C
�1)ij(xj � dj), (2.7)

where xi = {R(z⇤), lA(z⇤),⌦bh
2} are values predicted in di↵erent DE models, di = {RPlanck

,

l
Planck

A
,⌦bh

2Planck} are set to their mean values and Cij is their covariance matrix derived
from the correlation matrix of ⇤CDM model listed in table 1 [31]. (C�1)ij means its inverse
matrix. Here we use the approximate formula of z⇤ to calculate xi [32]

z⇤ = 1048[1 + 0.00124(⌦bh
2)�0.738][1 + g1(⌦mh

2)g2 ] , (2.8)

where

g1 =
0.0738(⌦bh

2)�0.238

1 + 39.5(⌦bh
2)0.763

, (2.9)

g2 =
0.560

1 + 21.1(⌦bh
2)1.81

. (2.10)
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to Planck 2015, there are significant gains in the precision of some parameters which are
correlated with the reionization optical depth. Due to improved modelling of the high-l po-
larization, moreover, there are more robust constraints on many parameters which will be
a↵ected by residual modelling uncertainties only at the 0.5� level. The constraints on the
distance priors given in “Planck Blue Book” [24] are about 50% smaller than those given by
Planck 2015 TT+lowP [25]. All in all, it is meaningful to update the distance priors with
the full-mission Planck measurement of CMB.

Following the previous work in [26], we update the distance priors with Planck 2018
and present the constraints on several DE models with these new distance priors. This paper
is organized as follows. In section 2.1, we show our methodology to reconstruct the distance
priors from Planck 2018 chains. Then the new distance priors are presented in section 2.2.
In section 2.3, we check our results in several di↵erent DE models. Concretely, we constrain
the equation of state of DE from distance priors and compare our results with those by fitting
the full data of Planck 2018 release. A brief summary is given in section 3. In addition, we
provide a note on how to use the distance priors in the CosmoMC package in the appendix
which should be quite useful for the readers.

2 Distance priors from Planck 2018 data and constraints on DE models

2.1 Methodology

The distance priors provide e↵ective information of CMB power spectrum in two aspects:
the acoustic scale lA characterizes the CMB temperature power spectrum in the transverse
direction, leading to the variation of the peak spacing, and the “shift parameter” R influences
the CMB temperature spectrum along the line-of-sight direction, a↵ecting the heights of the
peaks.

We adopt the popular definitions of the distance priors as follows [12]:

lA = (1 + z⇤)
⇡DA(z⇤)

rs(z⇤)
, (2.1)

R(z⇤) ⌘
(1 + z⇤)DA(z⇤)

p
⌦mH

2
0

c
, (2.2)

where z⇤ is the redshift at the photon decoupling epoch. Here we use the values of z⇤ given
by the Planck 2018 chains. rs is the comoving sound horizon, defined by

rs(z) =
c

H0

Z
1/(1+z)

0

da

a2E(a)

r
3
⇣
1 + 3⌦bh2

4⌦�h2a

⌘ ,

3

4⌦�h
2
= 31500(TCMB/2.7K)�4

, TCMB = 2.7255K . (2.3)

And the angular diameter distance DA is given by

DA =
c

(1 + z)H0

p
|⌦k|

sinn


|⌦k|1/2

Z z

0

dz
0

E(z0)

�
, (2.4)
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Figure 1. Constraints on the distance priors in the base ⇤CDM model from Planck 2015 TT+lowP
(the black, dashed contours) and Planck 2018 TT, TE, EE+lowE (the red, solid ones).

In the base ⇤CDM model, we constrain the set of parameters {⌦m, H0,⌦bh
2}. In

figure 2, we show the comparison of our results from distance priors and the global fitting
results from Planck 2018. Clearly, the contours are almost overlapping, which indicates that
the distance priors can take place of full Planck released data e↵ectively.

To constrain the equation of state of DE better, we combine the distance priors for the
base ⇤CDM model with the low redshift Baryon Acoustic Oscillation (BAO) measurements.
We use the 6dFGS [33], SDSS-MGS [34] and the final DR12 anisotropic BAO data [35] at
z = 0.106, 0.15, 0.38, 0.51, 0.61. Constraints on the parameters set {⌦m, H0,⌦bh

2
, w} in the

wCDM model and {⌦m, H0,⌦bh
2
, w, wa} in the CPL model are shown in figure 3 and figure 4

respectively. We can see that our results from distance priors for the base ⇤CDM model and
BAO measurements are consistent with those from Planck 2018.
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{R, lA,⌦bh
2, ns}
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