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• Motivation

• Methodology / Design of the Task

• Validation / Tests

• Future Prospect

Outline

Publication:
Li et al. PNAS May11, 2021 118 (19) [arXiv:2010.06608]

Ni et al. MNRAS.507.1021N [arXiv:2105.01016]

Repository:
https://github.com/eelregit/map2map

Trained model:
https://github.com/yueyingn/SRS-map2map
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Why super resolution (SR)

Cosmological simulations are expensive

Large dynamic range with nonlinear evolution

Time complexity  (num_particles  

time_steps)

Multi-scale physical process in hydrodynamic 

simulations of galaxy formation

∼ 𝒪 ×

Millennium-XXL (N-body simulation)
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Massive clusters

Galaxies / ISM

Galaxy groups

Cosmic Web:  >100 Mpc

Massive clusters: ~10 Mpc

Groups of galaxies: ~1 Mpc

Galaxies/ISM: ~10 kpc

SMBH/AGN: 1 ~ 10 kpc

Volume: ;
Grav softening: 
Particle load: 

Lbox = 250Mpc/h
ϵ = 1.5kpc/h

N = 2 × 55003

ASTRID simulation

Supermassive
Black holes

Large dynamic range & 
multi-scale physical process
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N
=
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N
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N
=
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N

=
4096 3

zoom simulations 

Cosmological volume

(Plot adapted from Nelson et al 2019)

We want to push cosmological simulations to larger volume and higher resolution 

Larger volume: 
• better statistics
• long-short mode coupling

Higher resolution 
• better resolve the internal 

structure of halo
• model the physical process of 

galaxy formation
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N
=

512 3
N

=
1024 3

N
=

2048 3
N

=
4096 3

zoom simulations 

Cosmological volume

(Plot adapted from Nelson et al 2019)

Next-generation
Simulations

Future large sky surveys

> 1014cMpc3

We want to push cosmological simulations to larger volume and higher resolution 
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Neural Network

What is SR — Deep learning image super resolution
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What is SR — Deep learning image super resolution

HR LR

[1808.03344] Deep Learning for Single Image Super-Resolution: A Brief Review
[1902.06068] Deep Learning for Image Super-resolution: A Survey

SR

https://arxiv.org/abs/1808.03344
https://arxiv.org/abs/1902.06068
https://arxiv.org/abs/1808.03344
https://arxiv.org/abs/1902.06068


9

SR simulation: train a deep learning model to generate small-scale features from 
low-resolution (LR) simulations

LR —> SR:  full phase-space distribution with 512x more tracer particles 
(therefore we enhance the mass resolution by 512 times)

HR SRLR
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di = xi − qi

Particle displacement

Final Position Initial (Cartesian) grid

(i = 1,....N)
HR

LR

3D images with 6 channels  {dx dy dz vx vy vz}x

y
a xy-slice

How to SR an N-body simulation I :  Format the N-body simulation
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LR

HR

3D images with 6 channels  {dx dy dz vx vy vz}

Advantages of Lagrangian description:

• conserves mass by construction

• Better describes the field with large dynamic range 

(resolve to smaller scales for high density region)

• SR results can be  formatted as simulations with 

distinguishable tracer particles will their 6D phase 

space distribution

How to SR an N-body simulation I :  Format the N-body simulation
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How to SR an N-body simulation II : Symmetry

Mass conservation

• Mass naturally conserved in Lagrangian prescription

Rotational symmetry

• Data augmentation with 48 operations from the  point group

• Brute-force approach to teach a model to be symmetry awareness

Oh

Translational symmetry

• CNN feature by construction

• periodic padding (on the LR input)

Convolution neural net
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HR-1

HR-2

HR-3
one-to-many task

LR —> HR

LR

Only in HR Initial Conditions

LR Initial Conditions

How to SR an N-body simulation III : Stochasticity 
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Stochasticity consequence 1:  need for better loss function

LR

HR

G
Loss

SR

Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between SR and HR

Supervised learning?

How to SR an N-body simulation III : Stochasticity 
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Stochasticity consequence 1:  need for better loss function

LR

HR

G
D Prob. Loss

SR

Use generative adversarial network (GAN) that adds another (discriminator) network to evaluate SR output. 

Train generator (G) and discriminator (D) alternatively in a game

Update G to fool D, and update D to distinguish SR from HR

How to SR an N-body simulation III : Stochasticity 
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Stochasticity consequence 2:  need for randomness

Add noises throughout our (generator) neural network

SR realizations are different among themselves (and with HR samples)

LR

HR

G
D Prob. Loss

SR

noise

How to SR an N-body simulation III : Stochasticity 
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LR field

Random noise
Random noise

Random noise
SR - 1

SR - 2

SR - 3

Add noise to give different 
realizations of the SR field

How to SR an N-body simulation III : Stochasticity 
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LR

HR

G
D Prob. Loss

SR

noise

How to train SR model : GAN

Generative model: learn the a probability distribution of data
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How to train SR model : cGAN & WGAN

LR

LR&HR

G
D Score WGAN-gp

LR&SR

Conditional on LR
Wasserstein Metric

noise

cGAN: help G to generate SR samples with right long- and short-wavelength mode coupling

Wasserstein metric:  better quantify the distance between generated field distribution and authentic distribution
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LR

G

SR

Density field

20 Mpc/  h

20 Mpc/  h

HR

Density field

Density field

20 Mpc/  h

Training Sets:
16 pairs of LR-HR simulations
BoxSize = 100 Mpc/
LR : Np = , 
HR : Np = , 

h
643 MDM = 3 × 1011M⊙
5123 MDM = 5.8 × 108M⊙

Test Sets:
10 pairs of LR-HR simulations
BoxSize = 100 Mpc/
Same cosmology and resolution as the
training sets

h

Displacement field

Velocity field

D

+LR

+LR

Score WGAN-gp

How to train SR model : training procedure
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Model Architecture: Generator

Based on styleGAN2

Generator
LR input

SR input
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Model Architecture: Generator

Based on styleGAN2
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ResNet
SR / HR field

Score

Model Architecture: Discriminator
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Validation of the SR fields
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Validation Metrics

Test Sets:
10 pairs of LR-HR simulations
BoxSize = 100 Mpc/
Same cosmology and resolution as the
training sets

h

Full field statistics :
• Matter power spectrum (two point statistics)
• Bispectrum (three point statistics)
• Redshift space 2D power spectrum (velocity)

Halo catalog statistics:
• Abundance of halos and subhalos
• Mean occupation distribution of subhalos
• 2-point correlation function
• Redshift-space correlation
• Pairwise velocity distribution
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HR

100 Mpc/h

LR

100 Mpc/h

SR

100 Mpc/h

Full field statistics: Matter power spectrum

Dimensionless power Δ2(k) ≡ k3P(k)/2π2



27

(2π)3B (k1, k2, k3) δD (k1 + k2 + k3) = ⟨δ (k1) δ (k2) δ (k3)⟩

Primary diagnostic for non-Gaussianity 
Defined for closed triangles (statistical homogeneity and isotropy)

Isosceles triangles

k3

k2k1

k2 = k3

Squeezed limit:

k2 = k3 ≫ k1

Full field statistics: Bispectra

k2
k1

k3
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Image from: Shun Saito 
RSD lecture note

The peculiar velocity makes the redshift-space clustering anisotropic

: scale factor
 : Hubble expansion rate

a
H(a)

s = x +
vz

aH(a)
̂z

  redshift-space 
     coordinate

The line of sight       
      direction

  real-space 
  coordinate

peculiar velocity along 
the line of sight

Full field statistics: Redshift-space distortion
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: scale factor
 : Hubble expansion rate

a
H(a)

s = x +
vz

aH(a)
̂z

  redshift-space 
     coordinate

The line of sight       
      direction

  real-space 
  coordinate

peculiar velocity along 
the line of sight

Full field statistics: Redshift-space distortion

̂z

μ

P(k, μ)

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum P(k, μ)
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Pℓ(k) = (2ℓ + 1)∫
1

0
dμP(k, μ)ℒℓ(μ)

̂z

μ

P(k, μ)

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum P(k, μ)

Full field statistics: Redshift-space distortion
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Validation Metrics

Test Sets:
10 pairs of LR-HR simulations
BoxSize = 100 Mpc/
Same cosmology and resolution as the
training sets

h

Full field statistics :
• Matter power spectrum (two point statistics)
• Bispectrum (three point statistics)
• Redshift space 2D power spectrum (velocity)

Halo catalog statistics:
• Abundance of halos and subhalos
• Mean occupation distribution of subhalos
• 2-point correlation function
• Redshift-space correlation
• Pairwise velocity distribution
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100 Mpc/h 100 Mpc/h 100 Mpc/h
LR HR SR

10 Mpc/h 10 Mpc/h 10 Mpc/h

10 Mpc/h 10 Mpc/h 10 Mpc/h

Halo catalogs : halos
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LR HR SR
100 Mpc/h 100 Mpc/h 100 Mpc/h

5 Mpc/h

5 Mpc/h 5 Mpc/h 5 Mpc/h

5 Mpc/h 5 Mpc/h

Subhalo

Host halo

Halo catalogs : subhalos
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HR

100 Mpc/h

LR

100 Mpc/h

SR

100 Mpc/h

Abundance of host halos

Halo catalog statistics : halo abundance

Resolution limit: 300 particles
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Abundance of subhalos

SR
5 Mpc/h

HR
5 Mpc/h

LR
5 Mpc/h

Halo catalog statistics : subhalo abundance

Resolution limit: 300 particles
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2D contour of ξ(π, rp)

HR

10 Mpc/h

SR

10 Mpc/h

Halo catalog statistics : redshift-space correlation

line of sight
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ωp(rp) = 2∫
∞

0
dπξ(rp, π)

2D contour of ξ(π, rp)

Halo catalog statistics : redshift-space correlation
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Apply to 1 Gpc/h volume

costs ~ 16 hours 
with a single GPU
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SR for hydro simulations

Test by observables —— 
Lya spectra

density
& 

temperature 
&

peculiar velocity 

of IGM gas

(Preliminary)
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SR for hydro simulations (Preliminary)
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Challenges and future directions

- Improve the performance on small scales / subhalos

- Accommodate for different cosmology and include the redshift dependency

- Development for hydrodynamic simulation

Summary

- SR model: generate the full 6D phase space N-body simulation output with 512 higher mass resolution

- The generated SR fields give statistically good agreement with the authentic HR fields

- Show potential to apply the SR model to large cosmic volume and generate mock catalogs


