Cosmology from Home

Super-resolution simulations

Speaker: Yueying Ni

With Yin Li (Flatiron), Rupert Croft (CMU), Tiziana Di Matteo (CMU), Simeon Bird (UCR), & Yu Feng (UCB)

Outline

Motivation

Methodology / Design of the Task

Validation / Tests

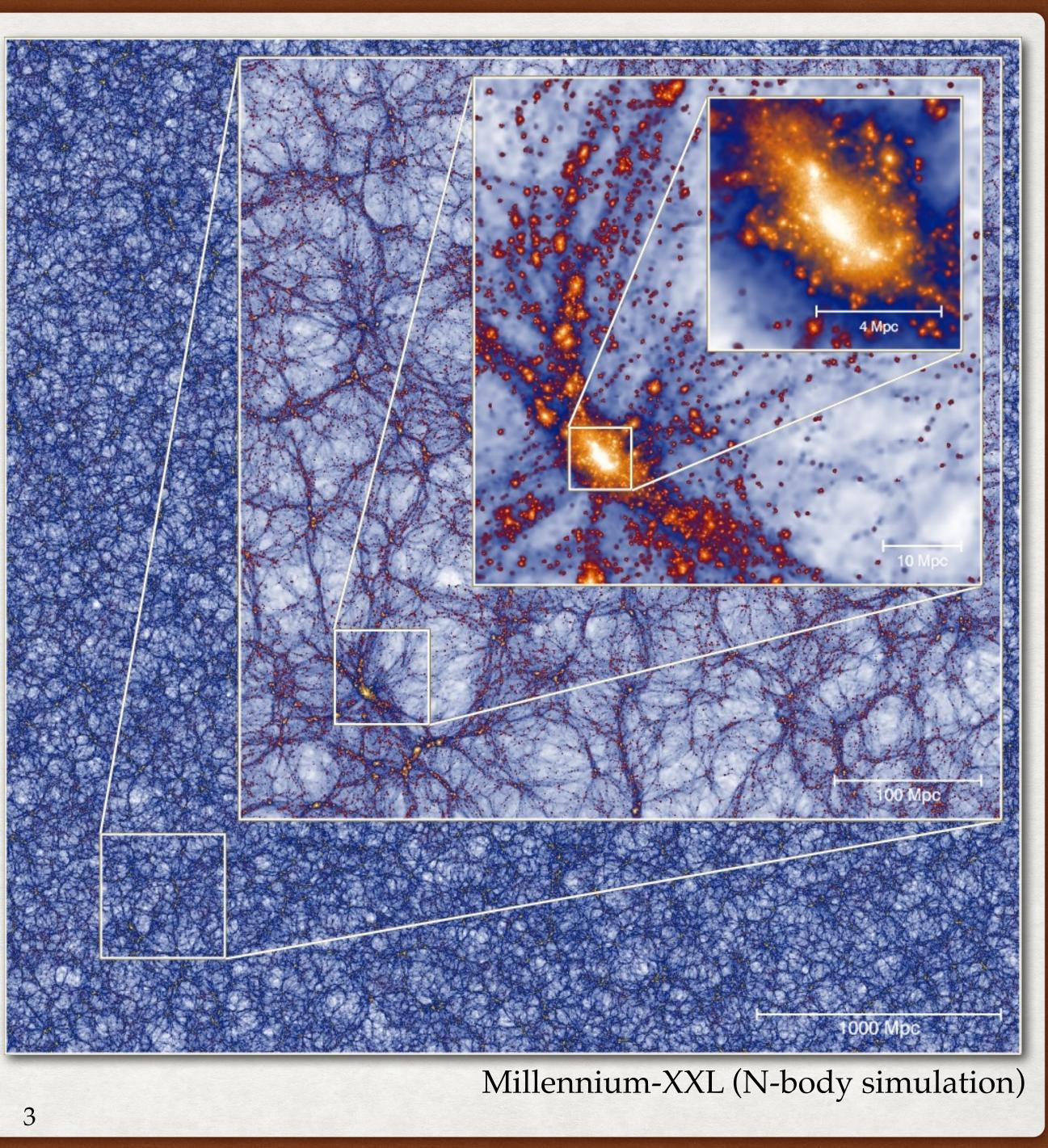
• Future Prospect

Publication:
Li et al. PNAS May11, 2021 118 (19) [arXiv:2
Ni et al. MNRAS.507.1021N [arXiv:2105.010
Repository:
https://github.com/eelregit/map2map
Trained model:
https://github.com/yueyingn/SRS-map2n

Why super resolution (SR)

Cosmological simulations are expensive

- Large dynamic range with nonlinear evolution
- Time complexity ~ Ø (num_particles ×
 - time_steps)
- Multi-scale physical process in hydrodynamic simulations of galaxy formation



Large dynamic range & multi-scale physical process

Cosmic Web: >100 Mpc

Massive clusters: ~10 Mpc

Groups of galaxies: ~1 Mpc

Galaxies/ISM: ~10 kpc

SMBH/AGN: $1 \sim 10$ kpc <

Massive clusters

2 cMpc/h

ASTRID simulation

Volume: $L_{\text{box}} = 250 \text{Mpc}/h$; Grav softening: $\epsilon = 1.5$ kpc/h Particle load: $N = 2 \times 5500^3$

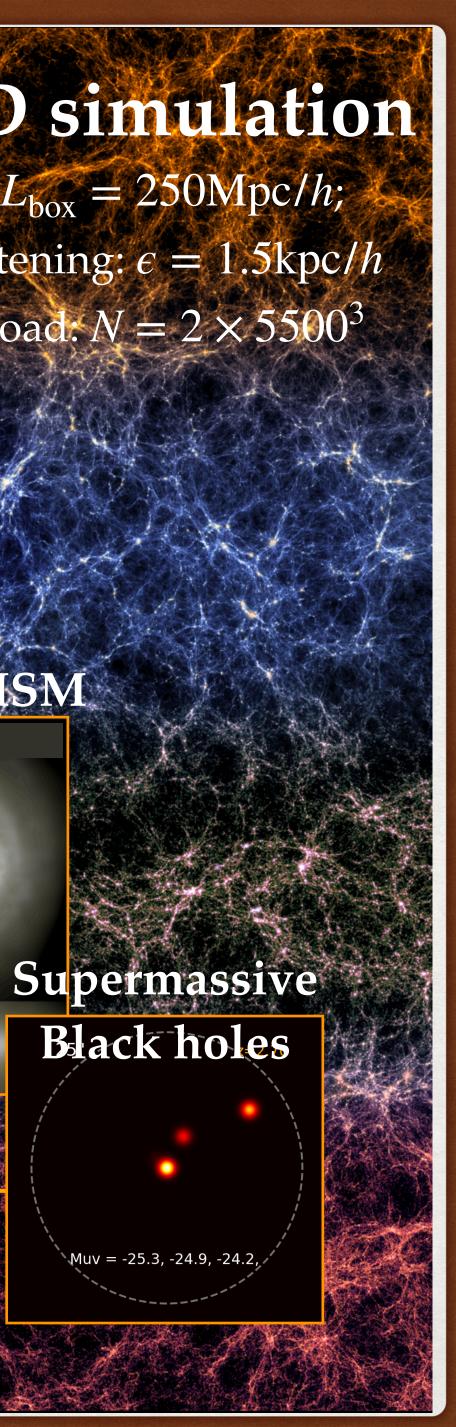
Galaxy groups

8 ckpc/h

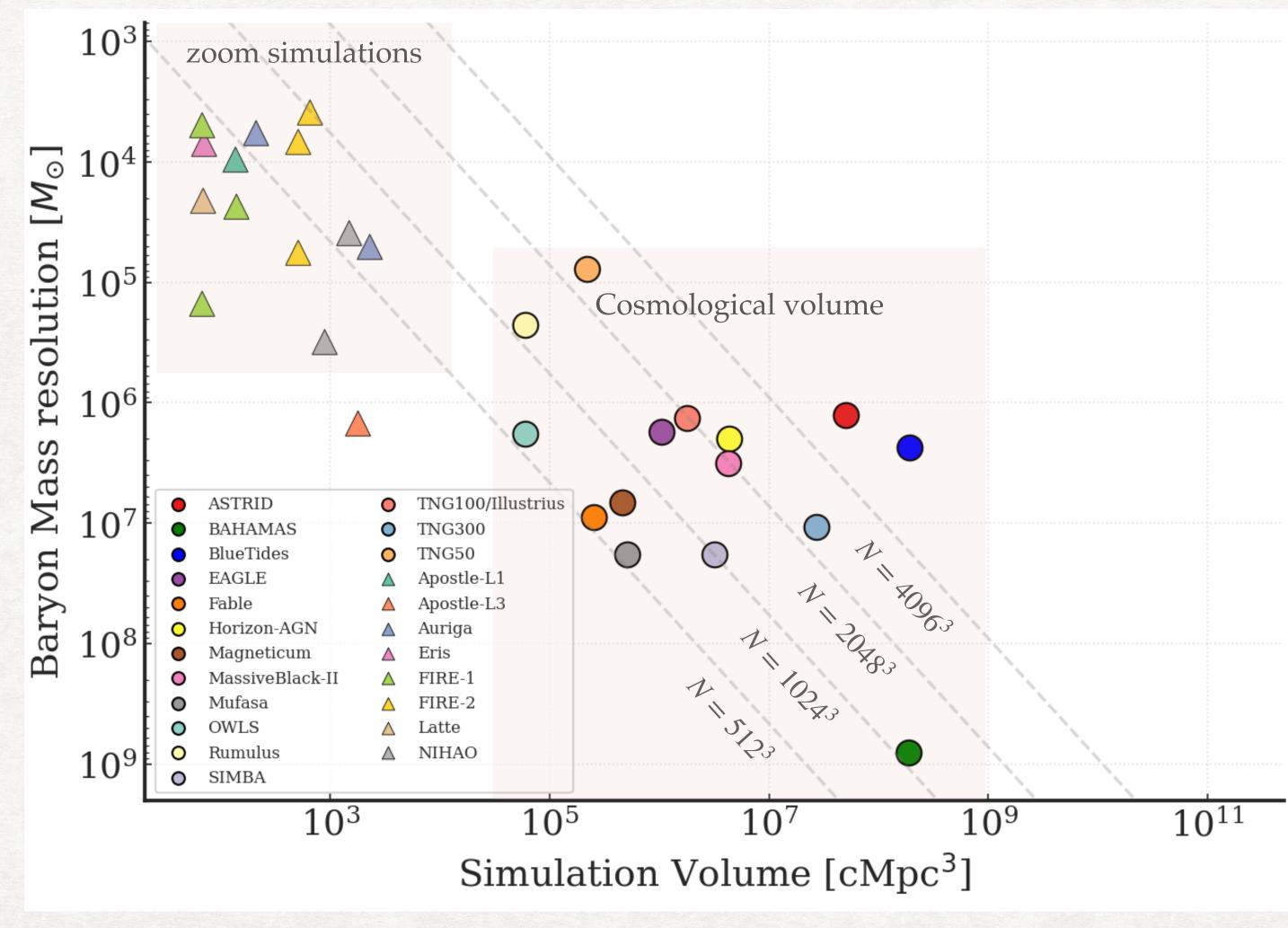
 $M_{\rm BH} = 2.9e + 09M_{\odot}$ $M_* = 3.9e + 11M_{\odot}$

1uv = -25.3, -24.9, -24

Black holes



We want to push cosmological simulations to larger volume and higher resolution



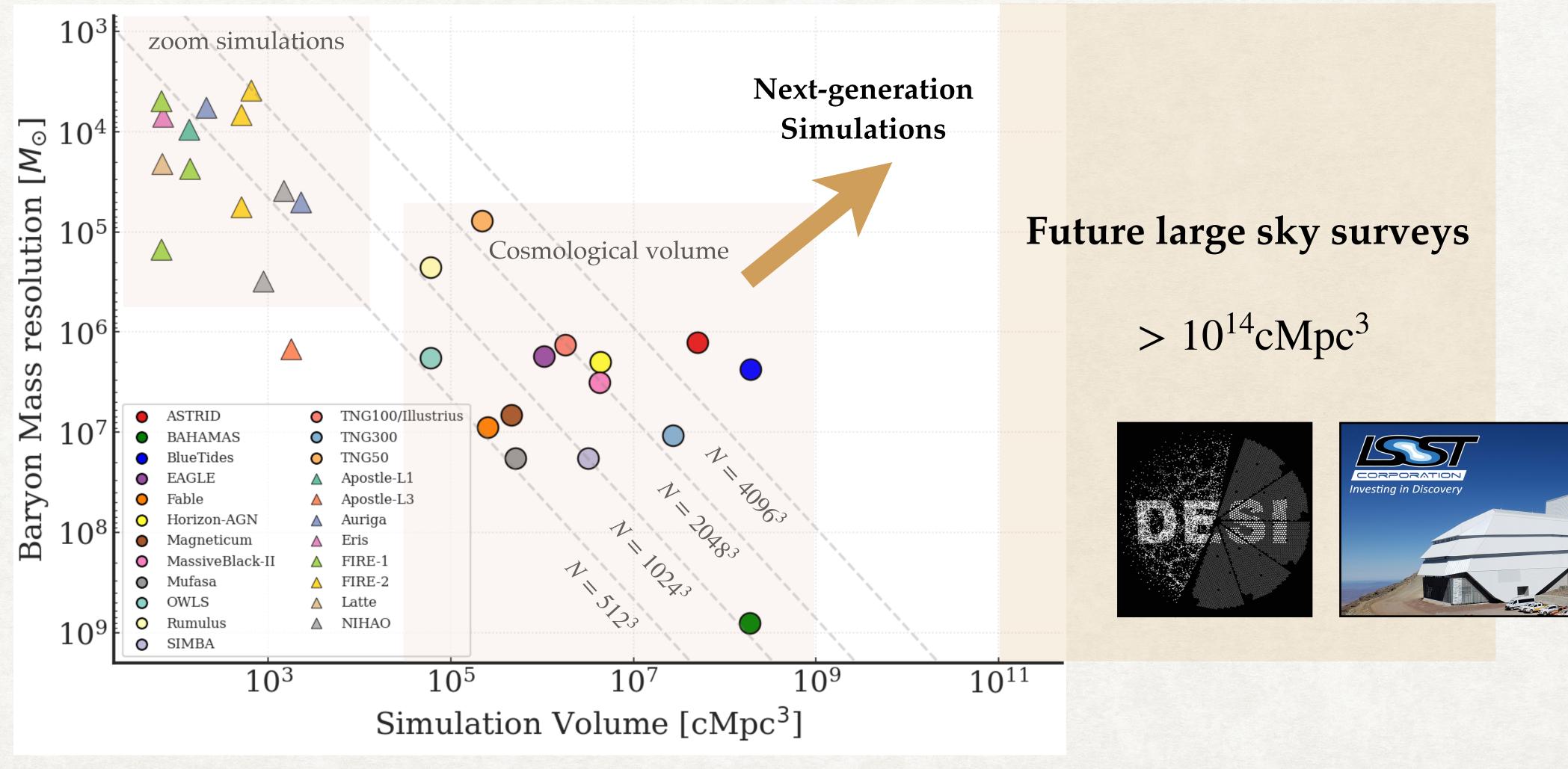
(Plot adapted from Nelson et al 2019)

Larger volume:

- better statistics
- long-short mode coupling

Higher resolution

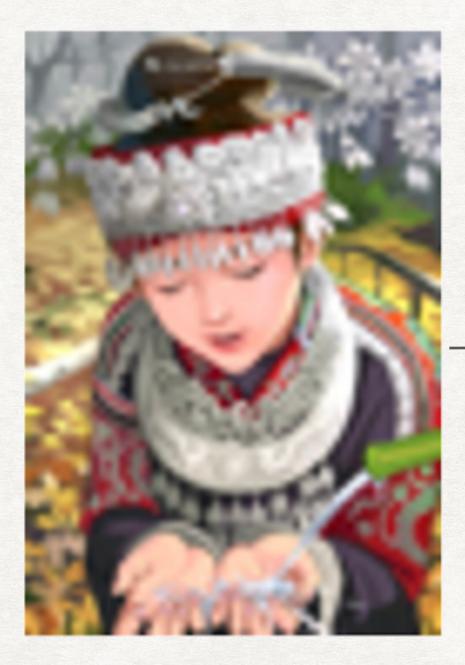
- better resolve the internal
 - structure of halo
- model the physical process of
- galaxy formation



(Plot adapted from Nelson et al 2019)

We want to push cosmological simulations to larger volume and higher resolution

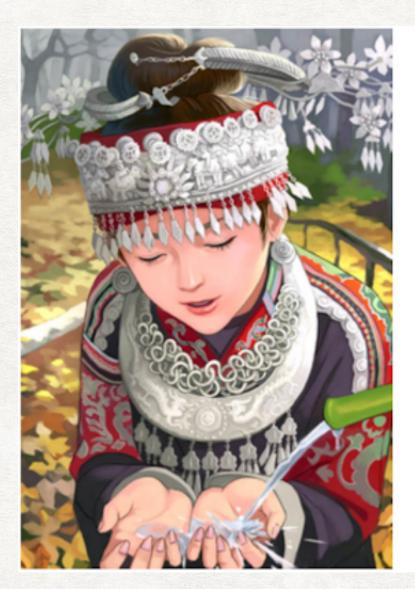
What is SR — Deep learning image super resolution

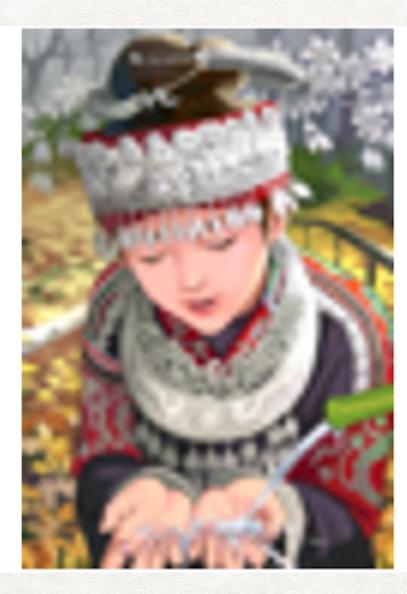


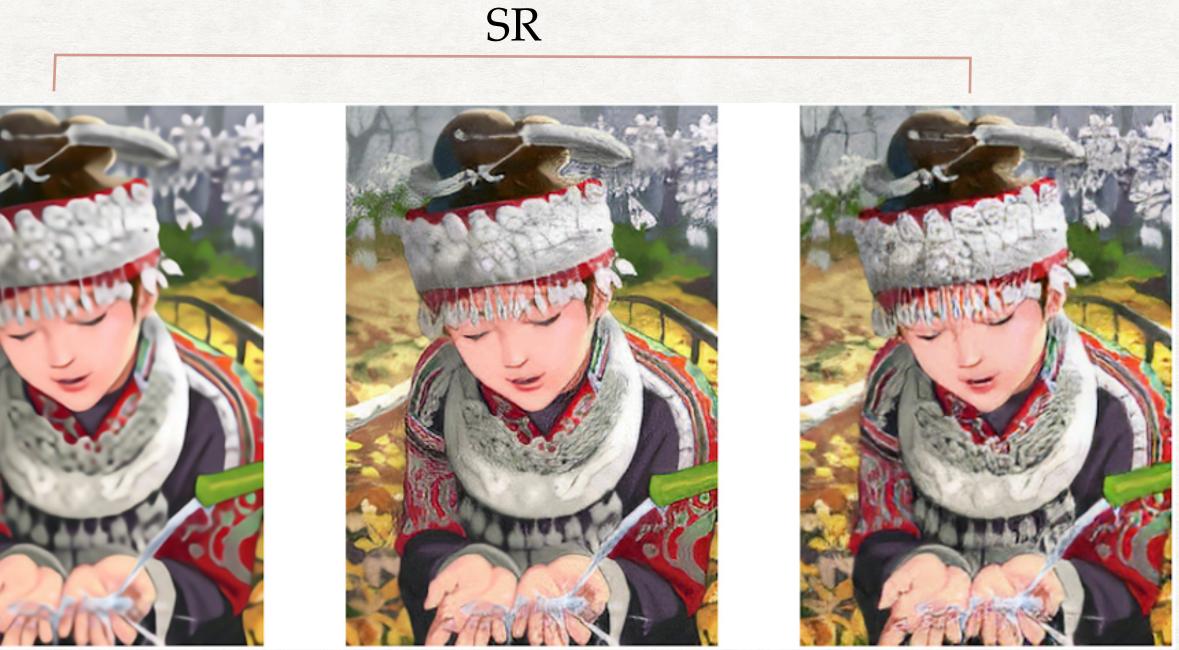
7

What is SR — Deep learning image super resolution

HR

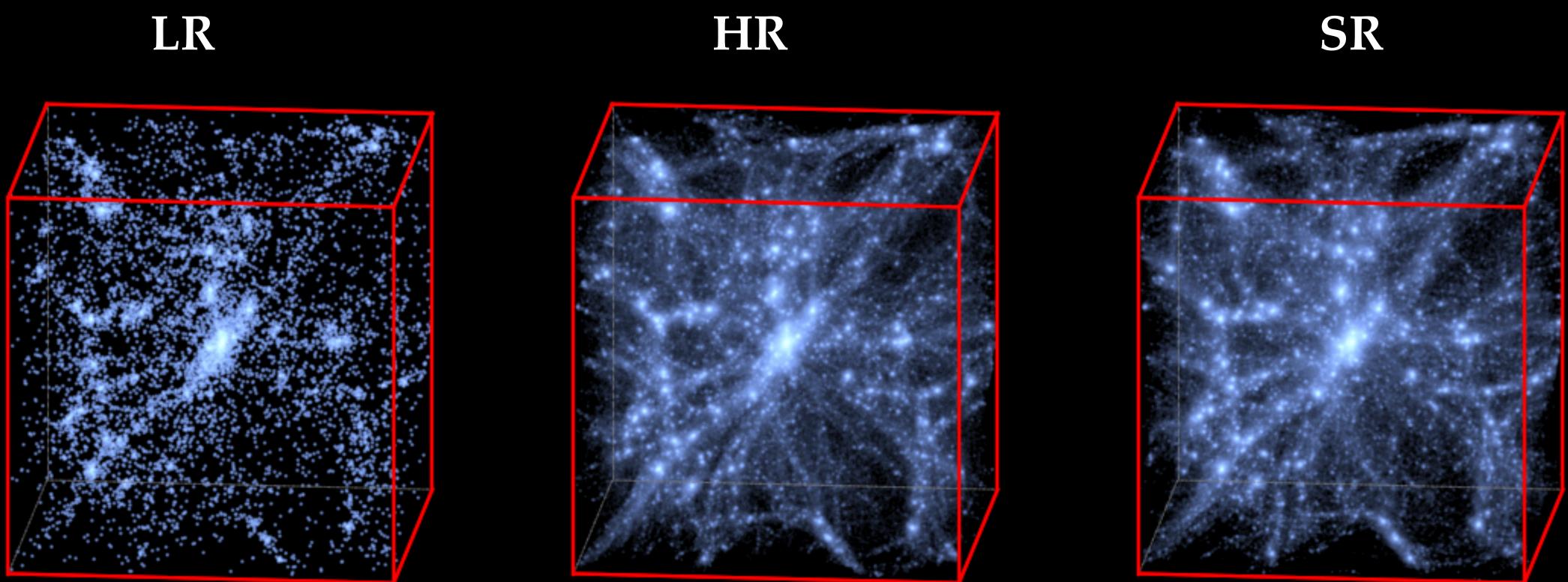






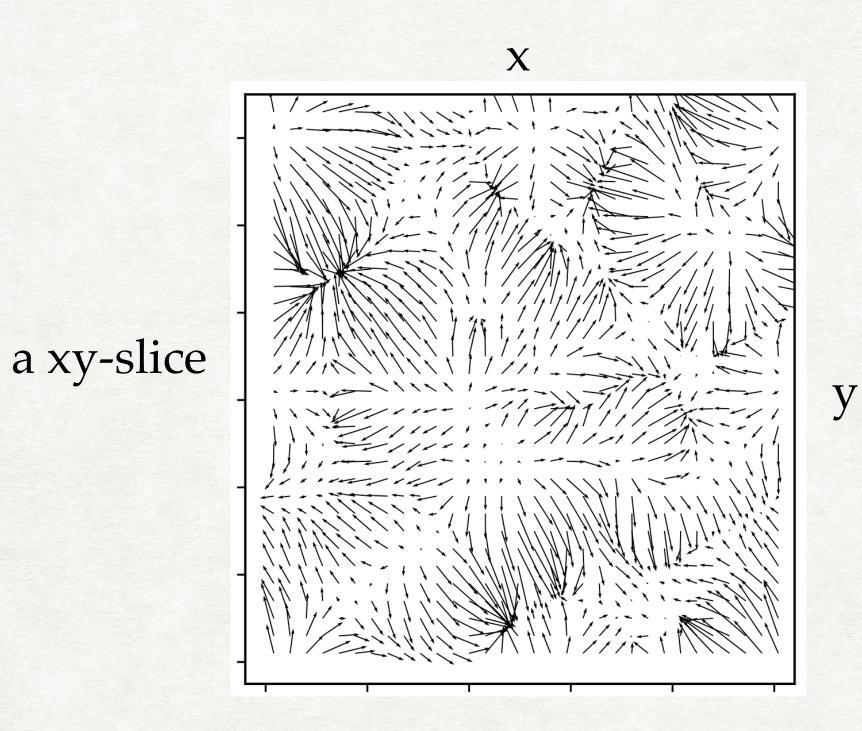
[1808.03344] Deep Learning for Single Image Super-Resolution: A Brief Review [1902.06068] Deep Learning for Image Super-resolution: A Survey

SR simulation: train a deep learning model to generate small-scale features from low-resolution (LR) simulations



LR —> SR: full phase-space distribution with 512x more tracer particles (therefore we enhance the mass resolution by 512 times)

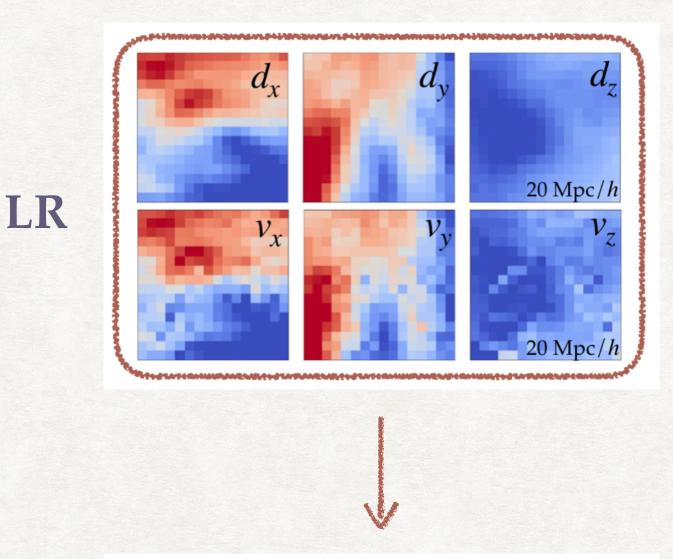
How to SR an N-body simulation I: Format the N-body simulation

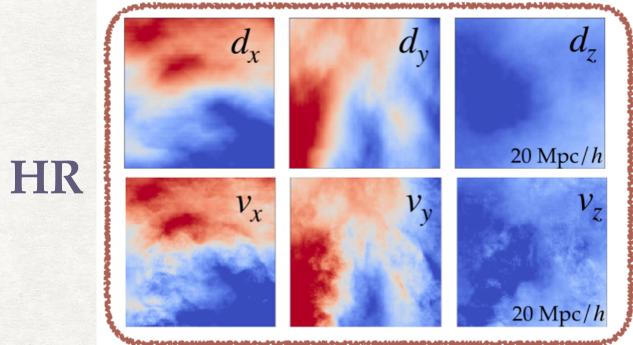


Particle displacement $\mathbf{d}_i = \mathbf{x}_i - \mathbf{q}_i \quad (i = 1, \dots, N)$

Final Position Initial (Cartesian) grid

3D images with **6 channels** $\{d_x d_y d_z v_x v_y v_z\}$



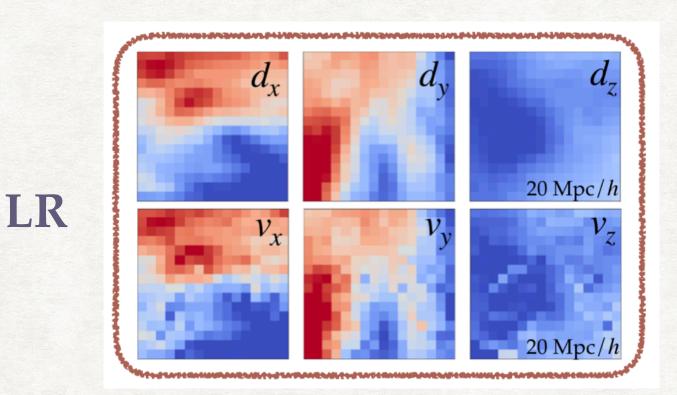


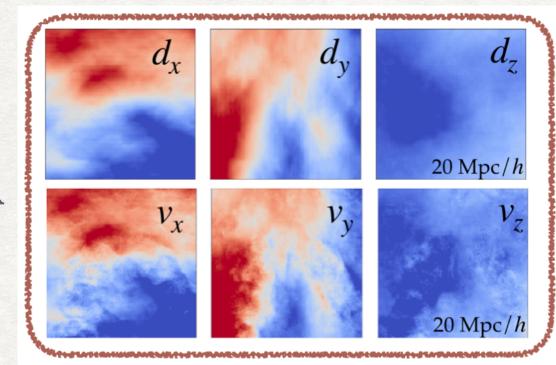
How to SR an N-body simulation I: Format the N-body simulation

Advantages of Lagrangian description:

- *conserves mass* by construction
- Better describes the field with *large dynamic range* (resolve to smaller scales for high density region)
- SR results can be *formatted as simulations* with distinguishable tracer particles will their 6D phase space distribution

3D images with **6 channels** $\{d_x d_y d_z v_x v_y v_z\}$





HR

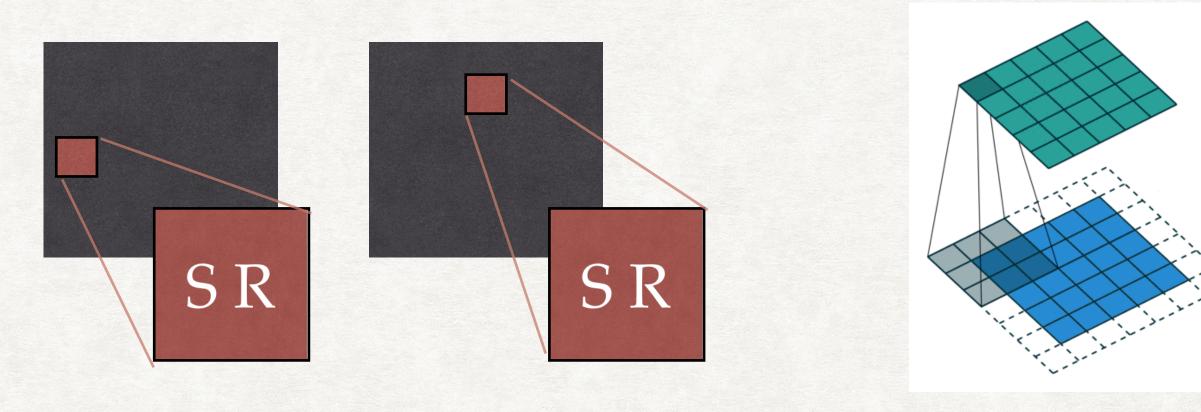
How to SR an N-body simulation II : Symmetry

Mass conservation

• Mass naturally conserved in Lagrangian prescription

Translational symmetry

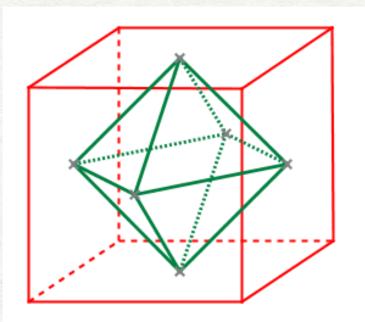
- CNN feature by construction •
- periodic padding (on the LR input)

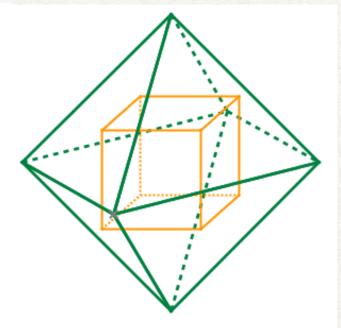


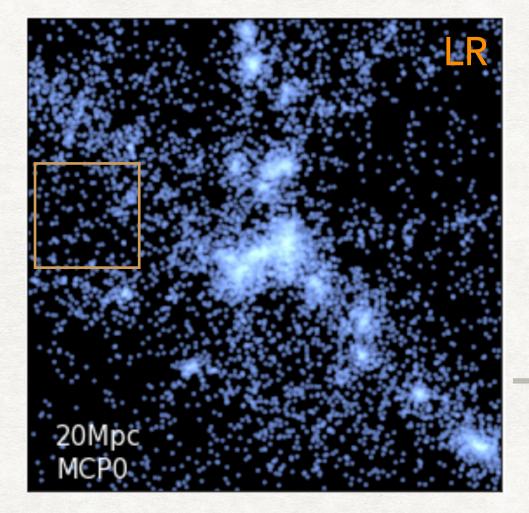
Rotational symmetry

- Data augmentation with 48 operations from the O_h point group •
- Brute-force approach to teach a model to be symmetry awareness •

Convolution neural net

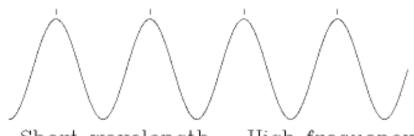






$LR \longrightarrow HR$

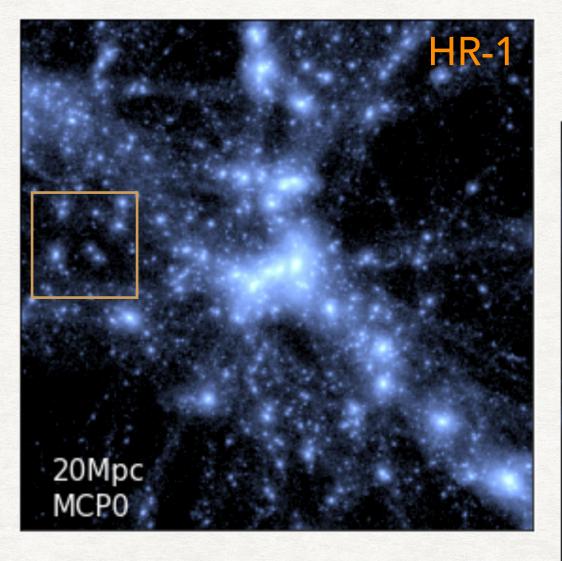
one-to-many task

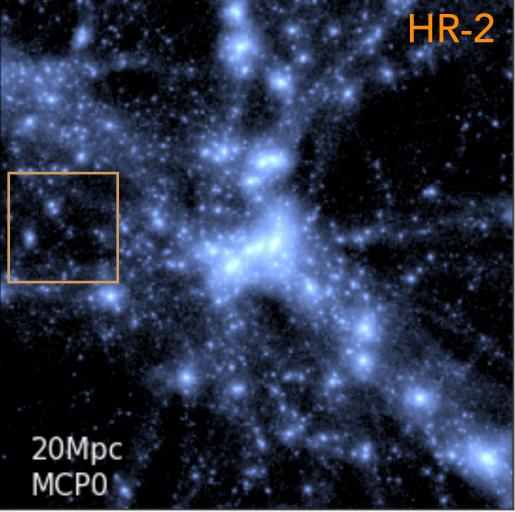


Short wavelength - High frequency

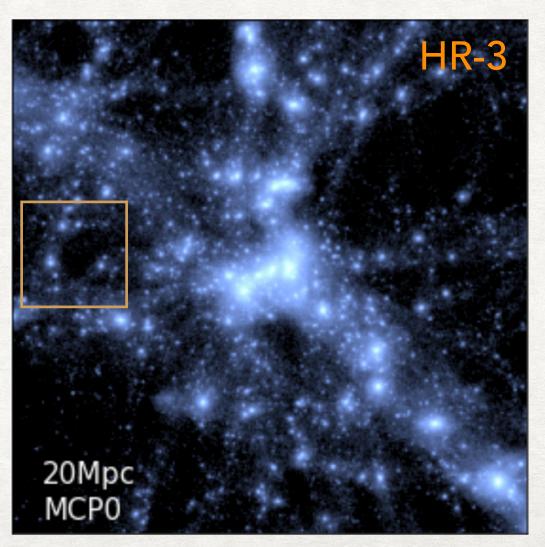
Long wavelength - Low frequency

LR Initial Conditions





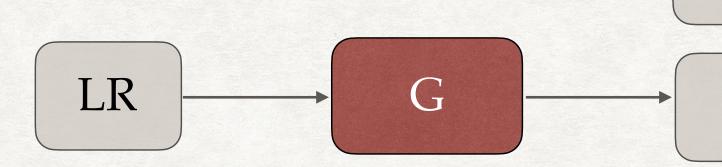
Only in HR Initial Conditions

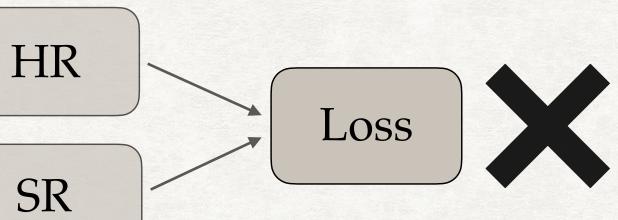


Stochasticity consequence 1: need for better loss function

Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between SR and HR

Supervised learning?

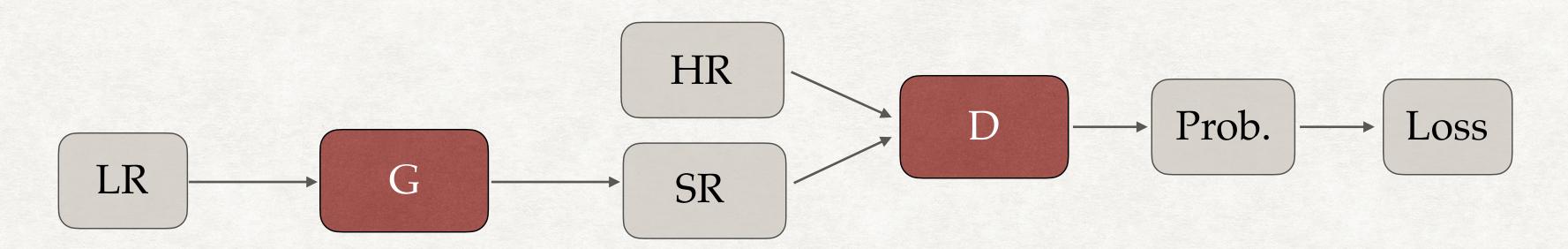




Stochasticity consequence 1: need for better loss function

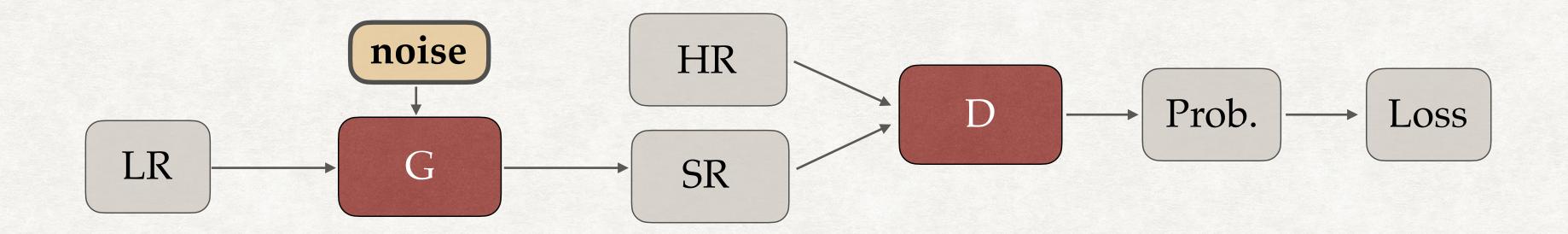
- Use generative adversarial network (GAN) that adds another (discriminator) network to evaluate SR output.
- Train generator (G) and discriminator (D) alternatively in a game

Update G to fool D, and update D to distinguish SR from HR



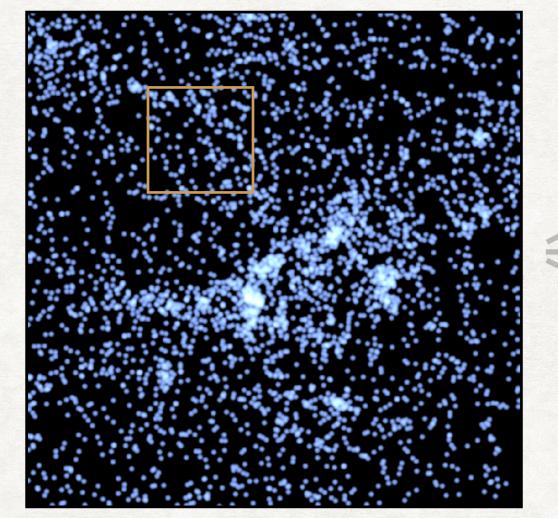
Stochasticity consequence 2: need for randomness

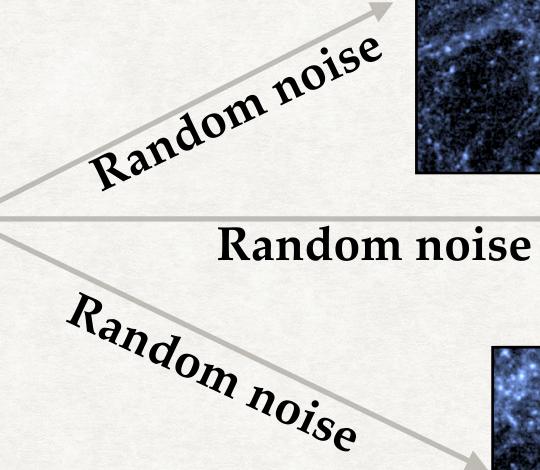
- Add noises throughout our (generator) neural network
- SR realizations are different among themselves (and with HR samples)

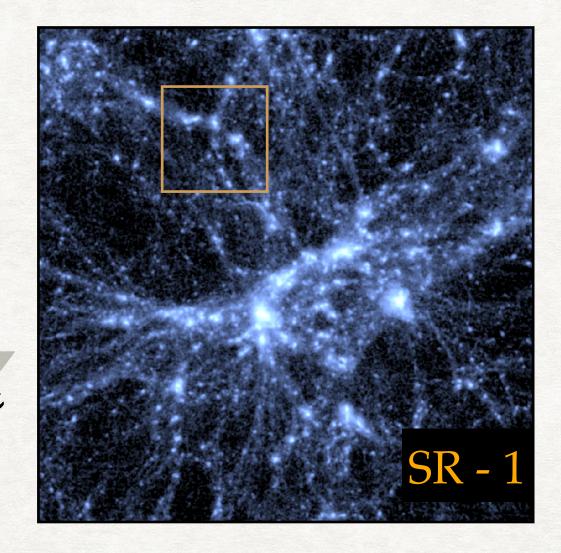


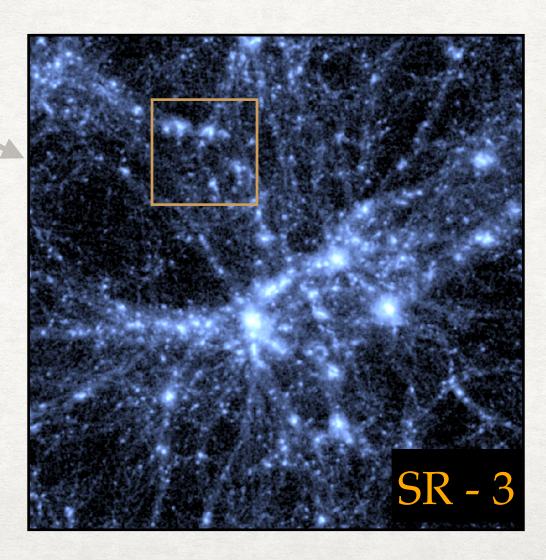
Add noise to give different realizations of the SR field

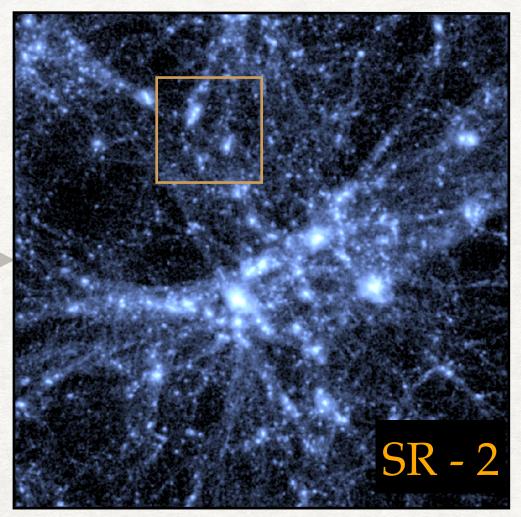
LR field





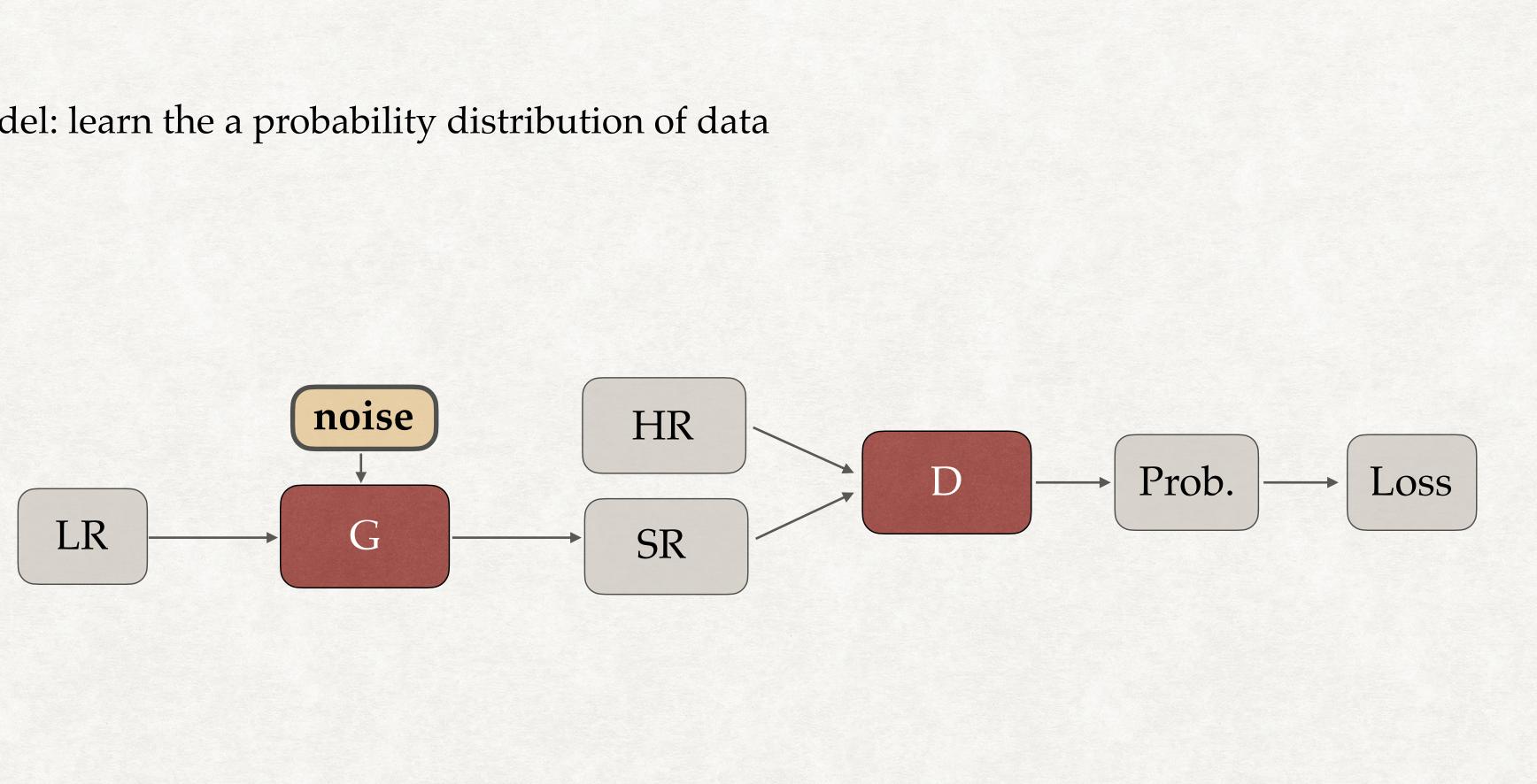






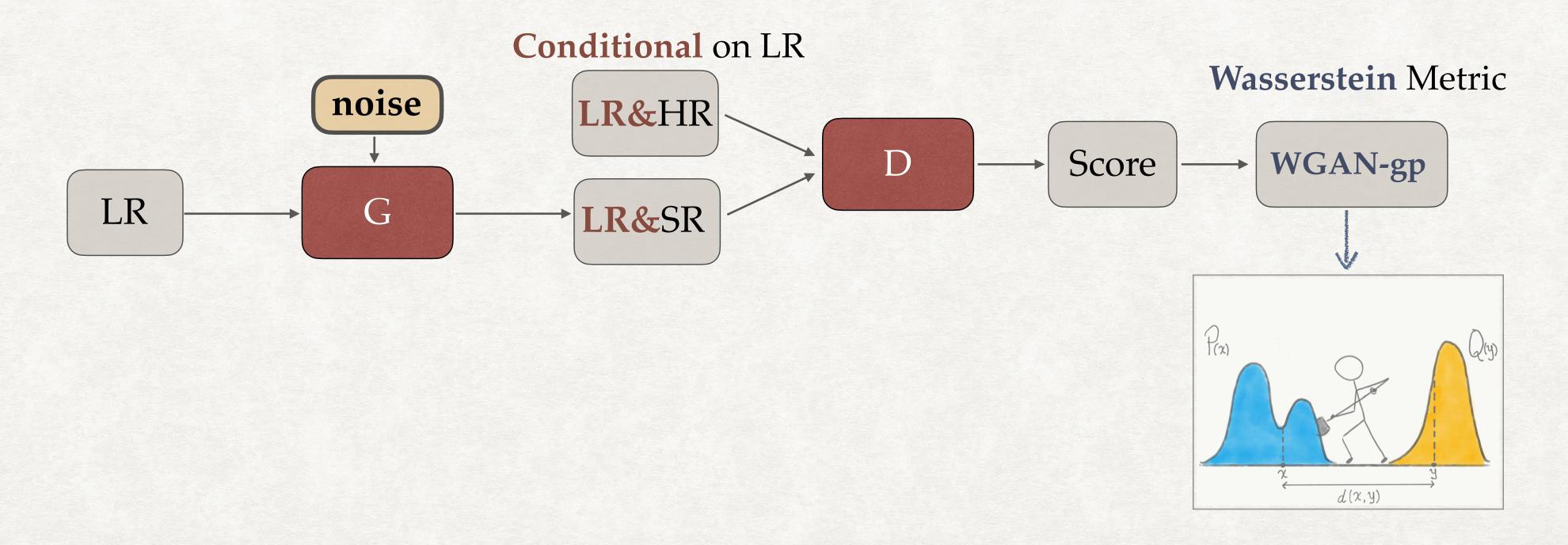
How to train SR model: GAN

Generative model: learn the a probability distribution of data



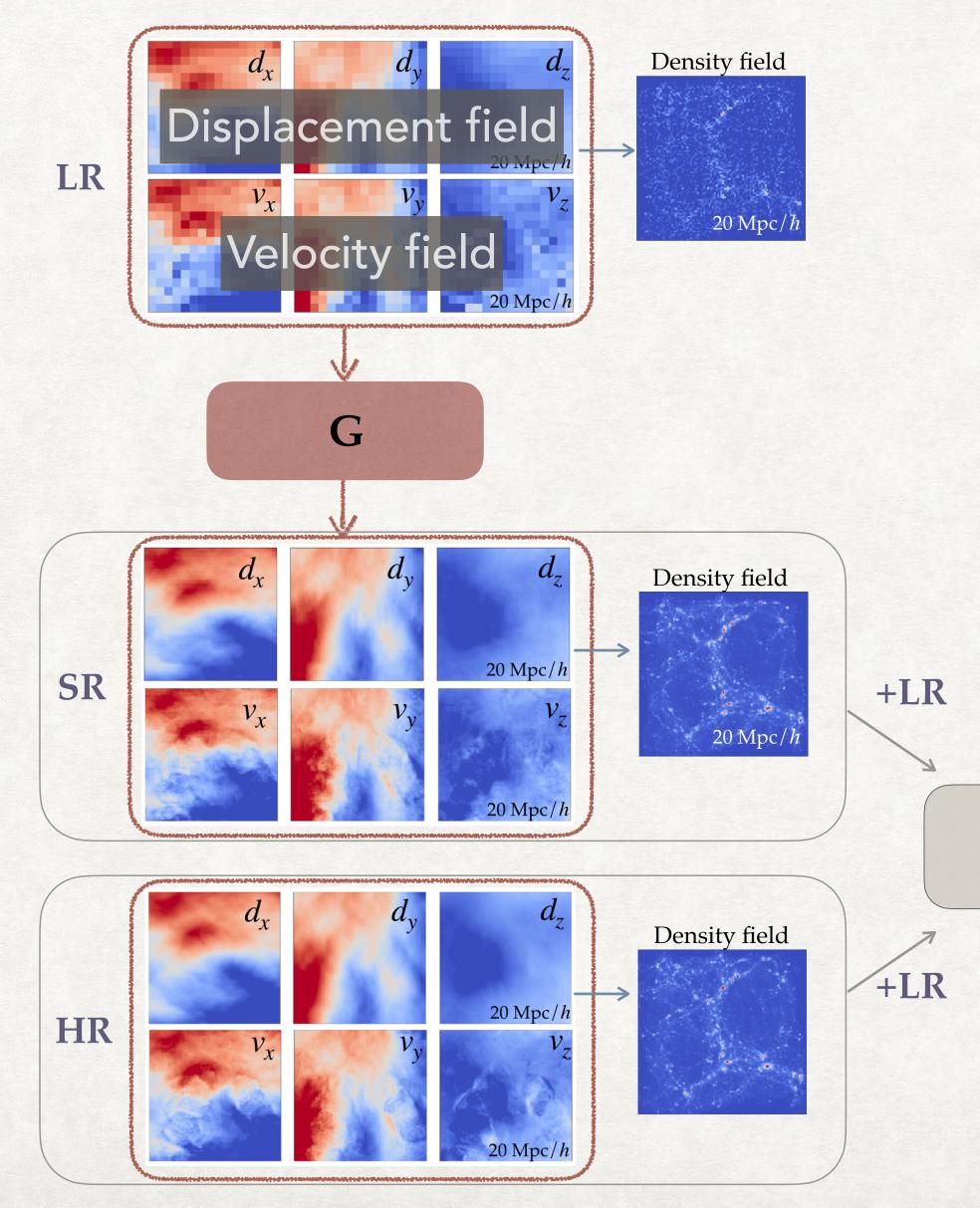
How to train SR model: cGAN & WGAN

- cGAN: help G to generate SR samples with right long- and short-wavelength mode coupling



Wasserstein metric: better quantify the distance between generated field distribution and authentic distribution

How to train SR model : training procedure



Training Sets: 16 pairs of LR-HR simulations BoxSize = 100 Mpc/*h* LR : Np = 64^3 , $M_{DM} = 3 \times 10^{11} M_{\odot}$ HR : Np = 512^3 , $M_{DM} = 5.8 \times 10^8 M_{\odot}$

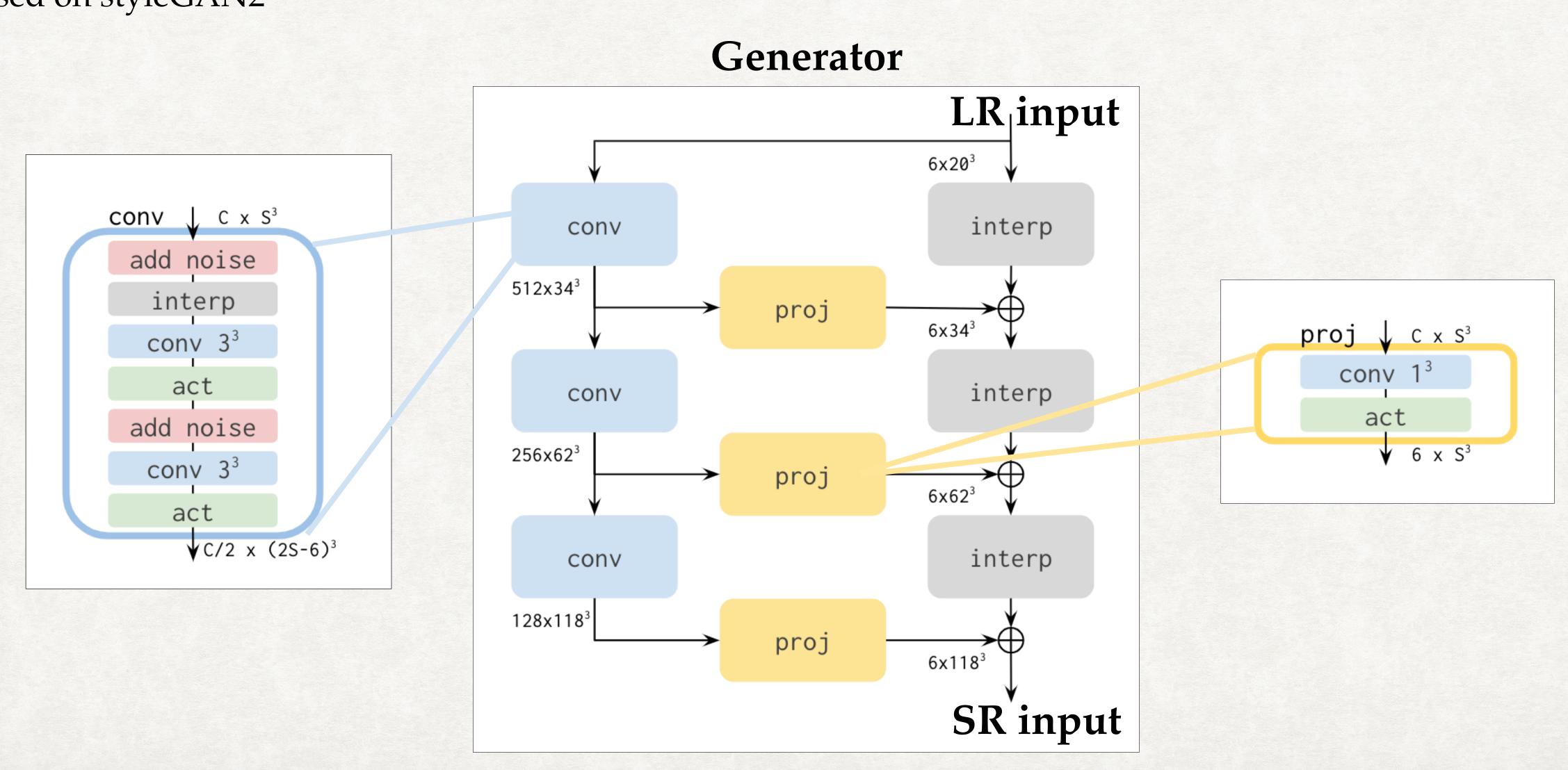
Test Sets:

10 pairs of LR-HR simulations BoxSize = 100 Mpc/*h* Same cosmology and resolution as the training sets

$$\mathbf{D} \longrightarrow \mathbf{Score} \longrightarrow \mathbf{WGAN-gp}$$

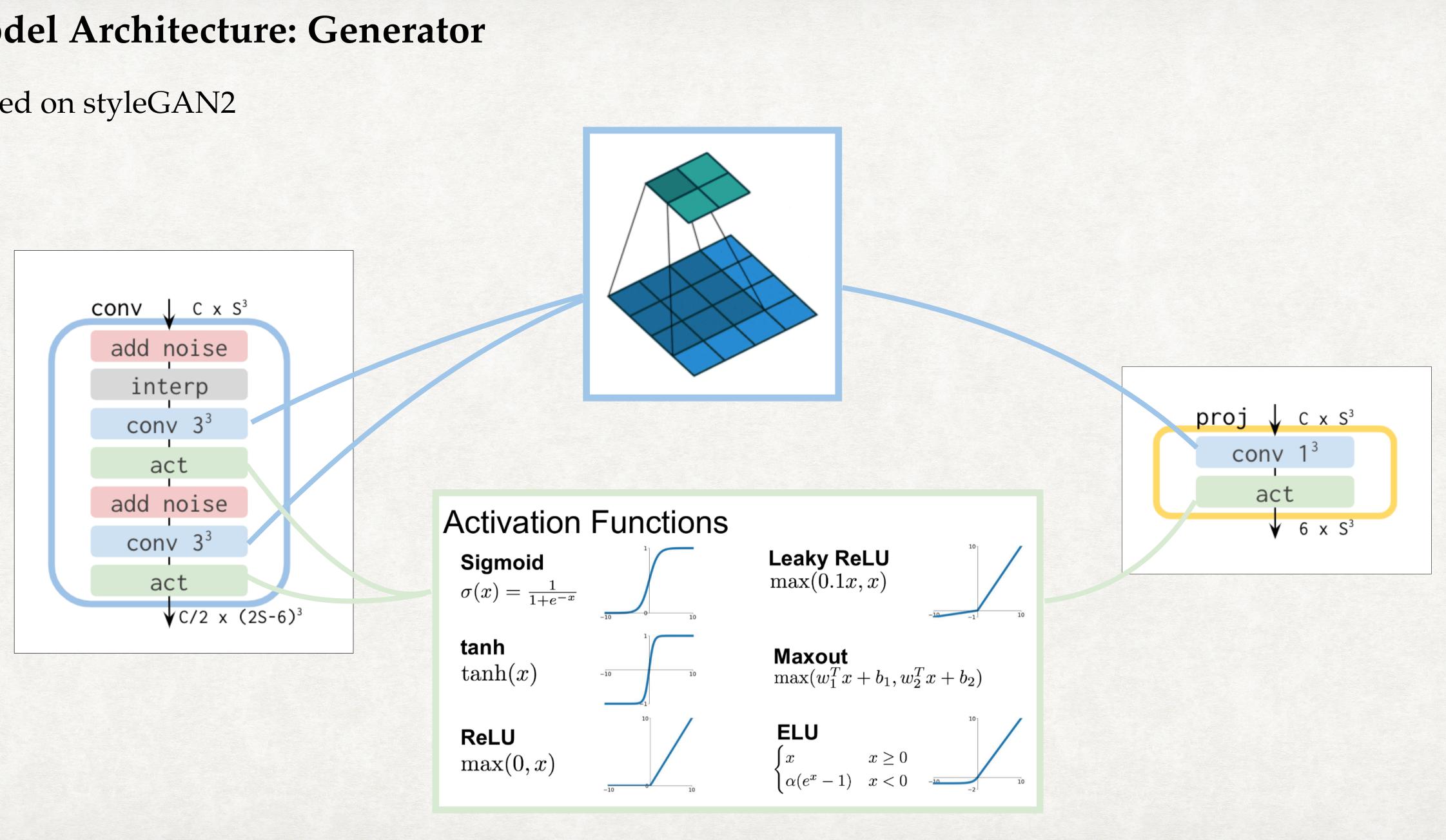
Model Architecture: Generator

Based on styleGAN2



Model Architecture: Generator

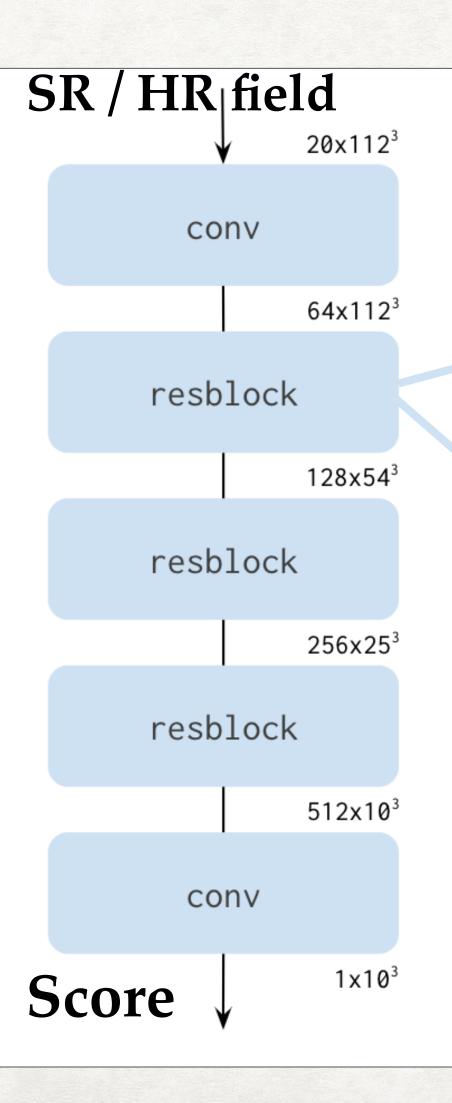
Based on styleGAN2

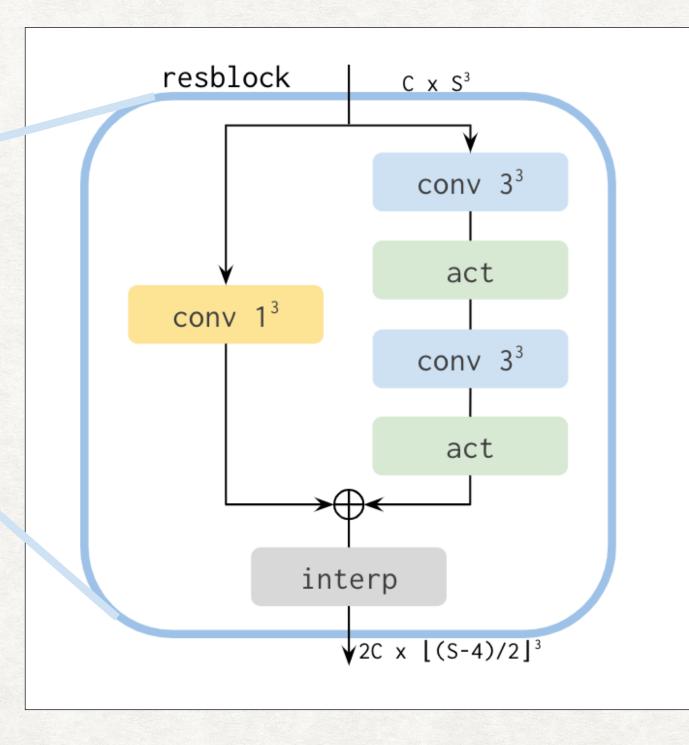


22

Model Architecture: Discriminator

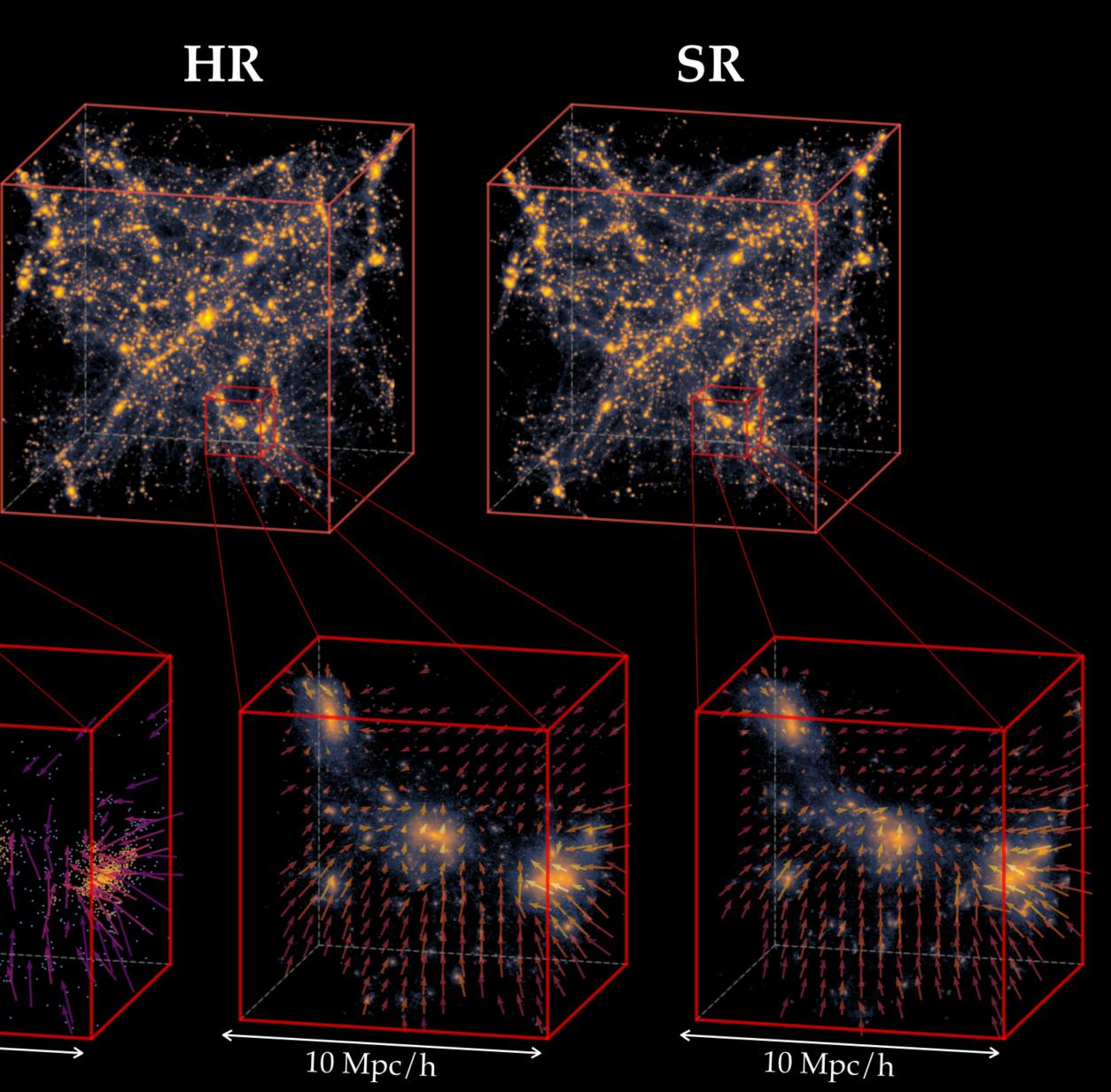
ResNet

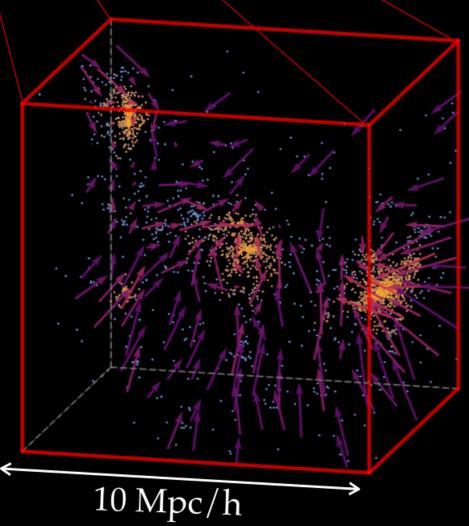




Validation of the SR fields

LR





Validation Metrics

Full field statistics :

- Matter power spectrum (two point statistics)
- **Bispectrum** (three point statistics)
- Redshift space 2D power spectrum (velocity)

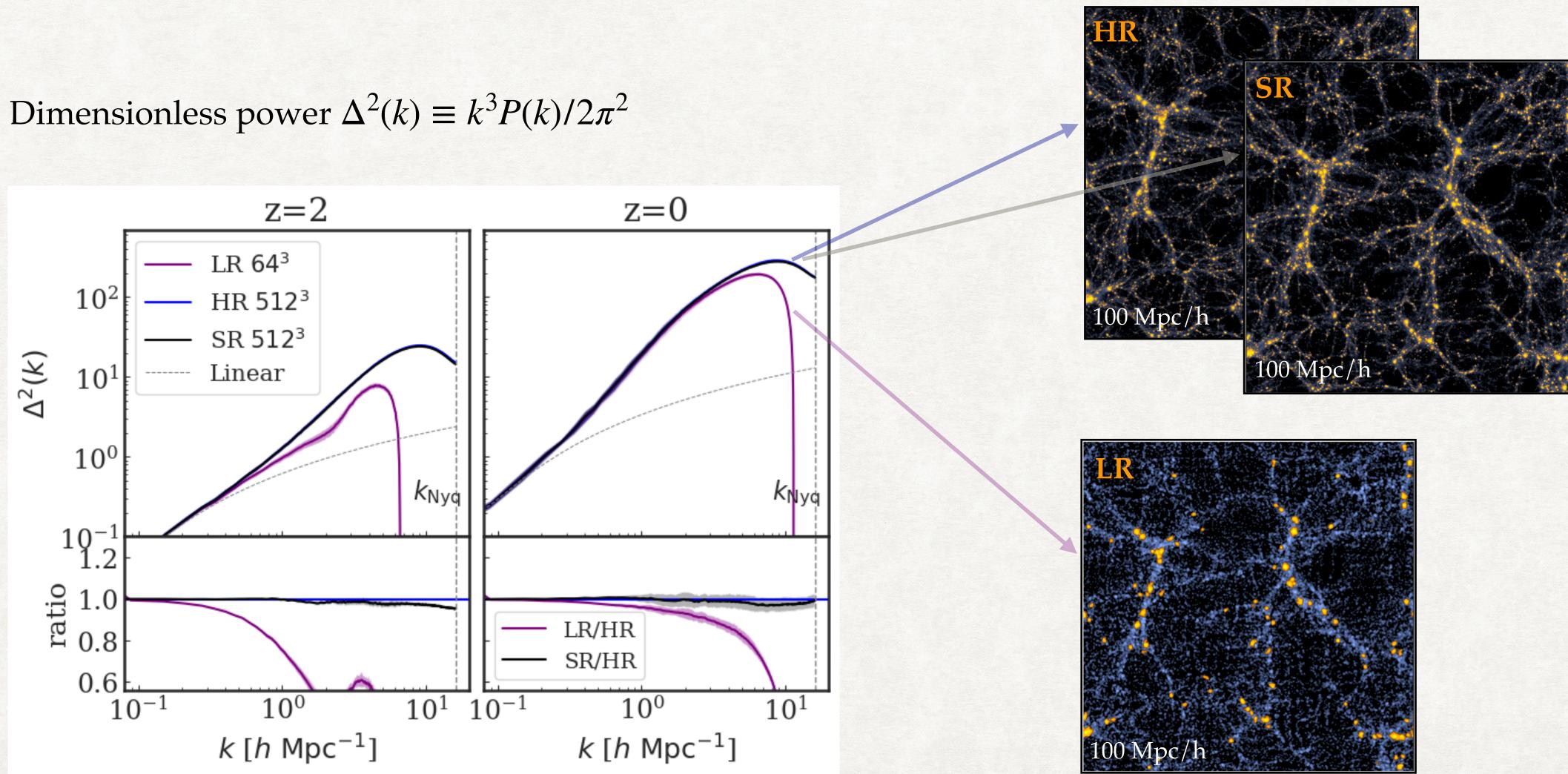
Halo catalog statistics:

- Abundance of halos and subhalos
- Mean occupation distribution of subhalos
- 2-point correlation function
- Redshift-space correlation
- Pairwise velocity distribution

Test Sets:

10 pairs of LR-HR simulations BoxSize = 100 Mpc/hSame cosmology and resolution as the training sets

Full field statistics: Matter power spectrum



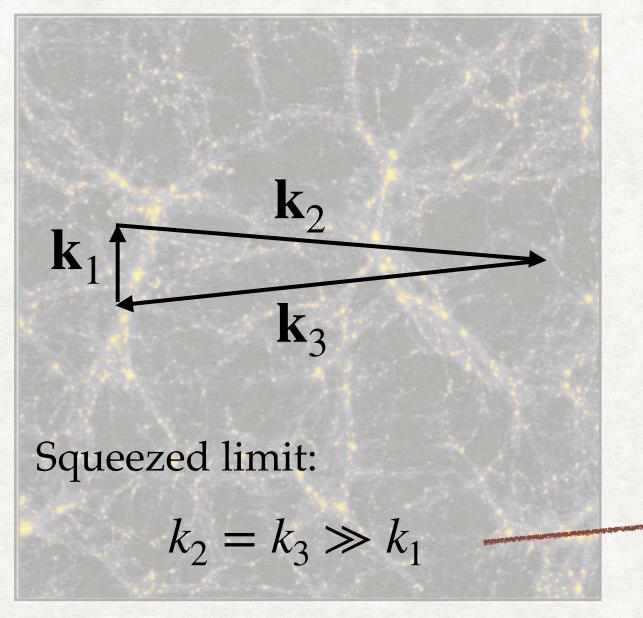
Full field statistics: Bispectra

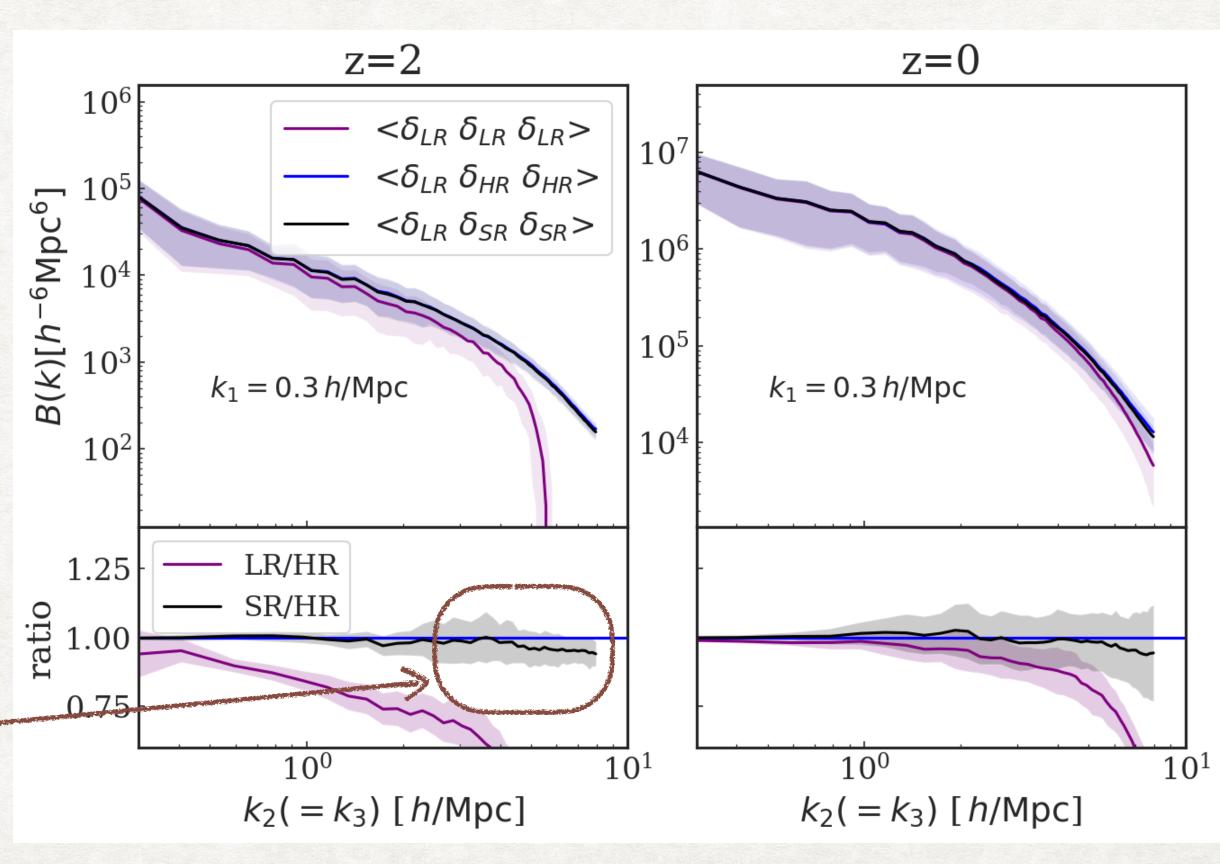
Primary diagnostic for **non-Gaussianity** Defined for closed triangles (statistical homogeneity and isotropy) $k_1/2$

$$(2\pi)^{3}B\left(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}\right)\delta_{\mathrm{D}}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)=\left\langle\delta\left(\boldsymbol{k}_{1}\right)\delta\left(\boldsymbol{k}_{2}\right)\delta\left(\boldsymbol{k}_{3}\right)\right\rangle$$

Isosceles triangles

 $k_2 = k_3$





Full field statistics: Redshift-space distortion

The peculiar velocity makes the redshift-space clustering anisotropic

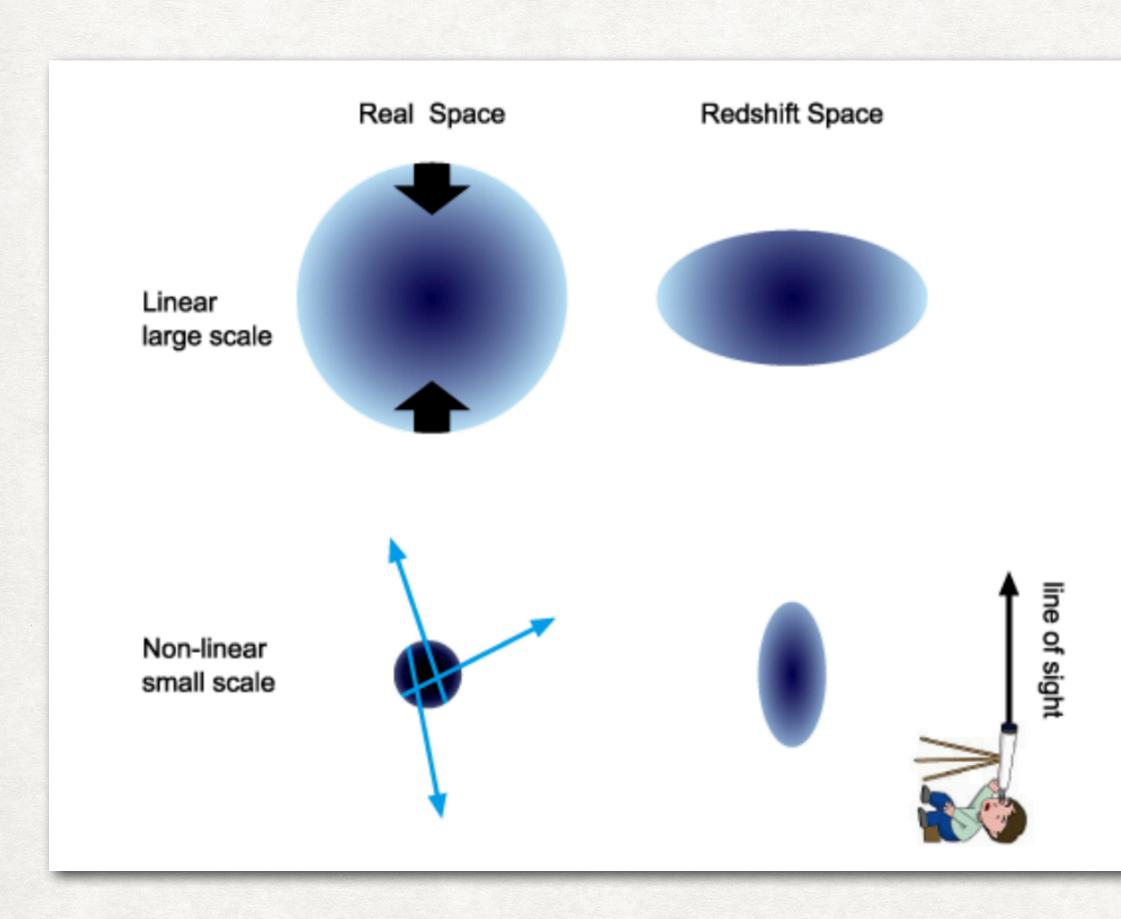
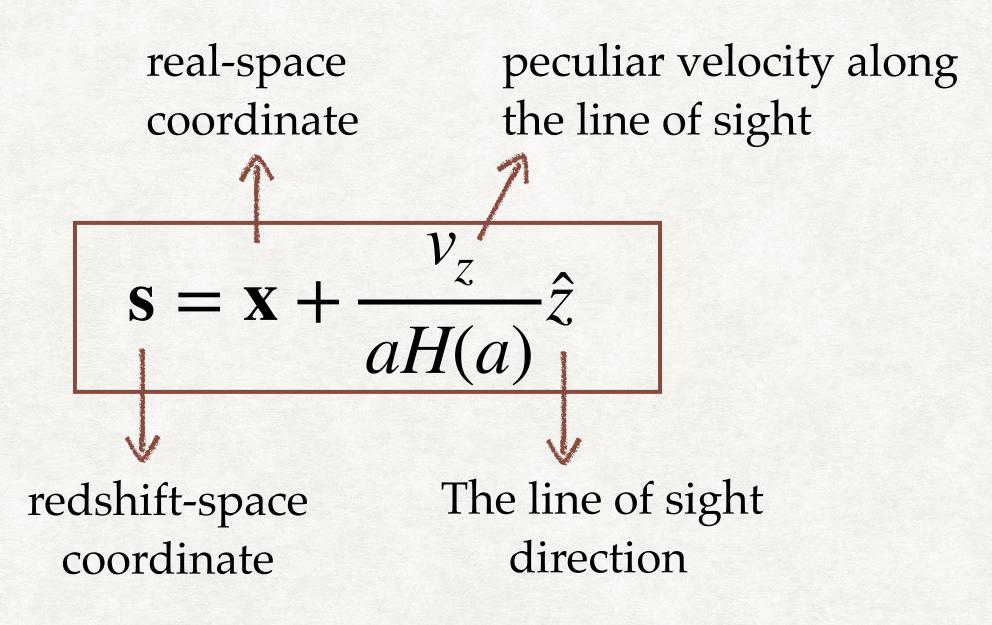


Image from: Shun Saito RSD lecture note

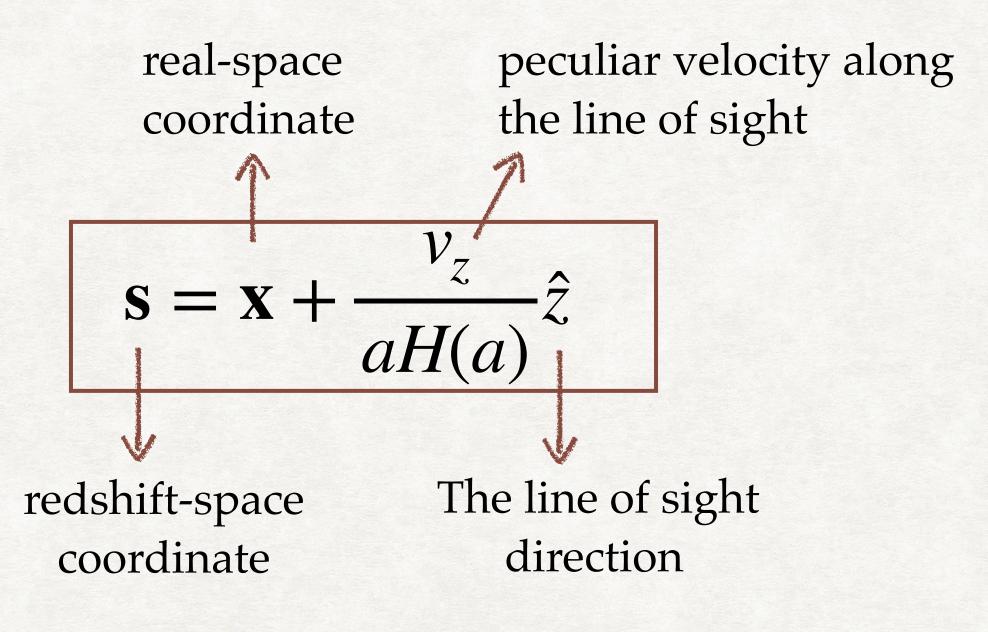


a: scale factor H(a): Hubble expansion rate

Full field statistics: Redshift-space distortion

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum $P(k, \mu)$





a: scale factor H(a): Hubble expansion rate

Full field statistics: Redshift-space distortion

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum $P(k, \mu)$





Validation Metrics

Full field statistics :

- Matter power spectrum (two point statistics)
- **Bispectrum** (three point statistics)
- Redshift space 2D power spectrum (velocity)

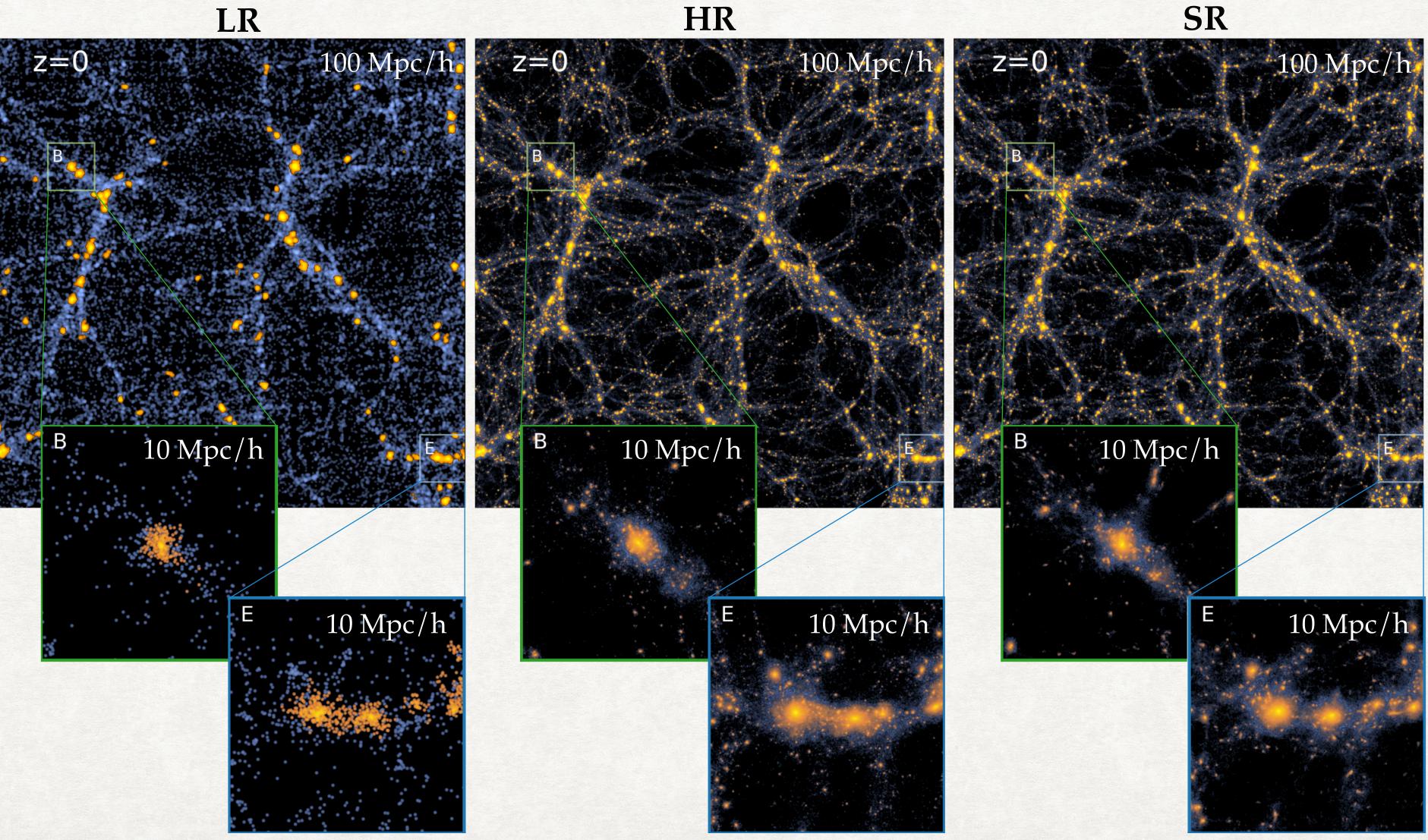
Halo catalog statistics:

- Abundance of halos and subhalos
- Mean occupation distribution of subhalos
- 2-point correlation function
- Redshift-space correlation
- Pairwise velocity distribution

Test Sets:

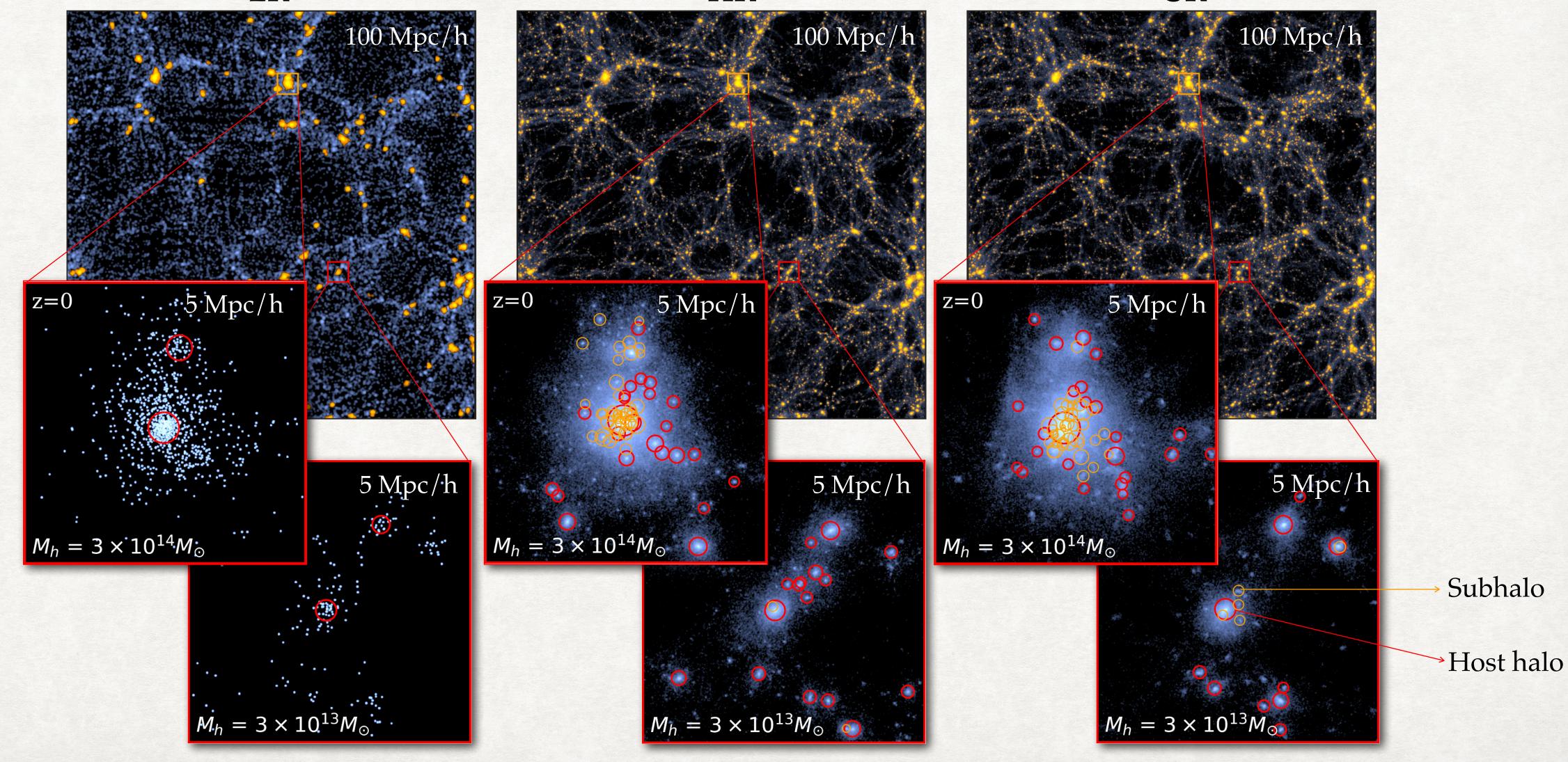
10 pairs of LR-HR simulations BoxSize = 100 Mpc/hSame cosmology and resolution as the training sets

Halo catalogs : halos



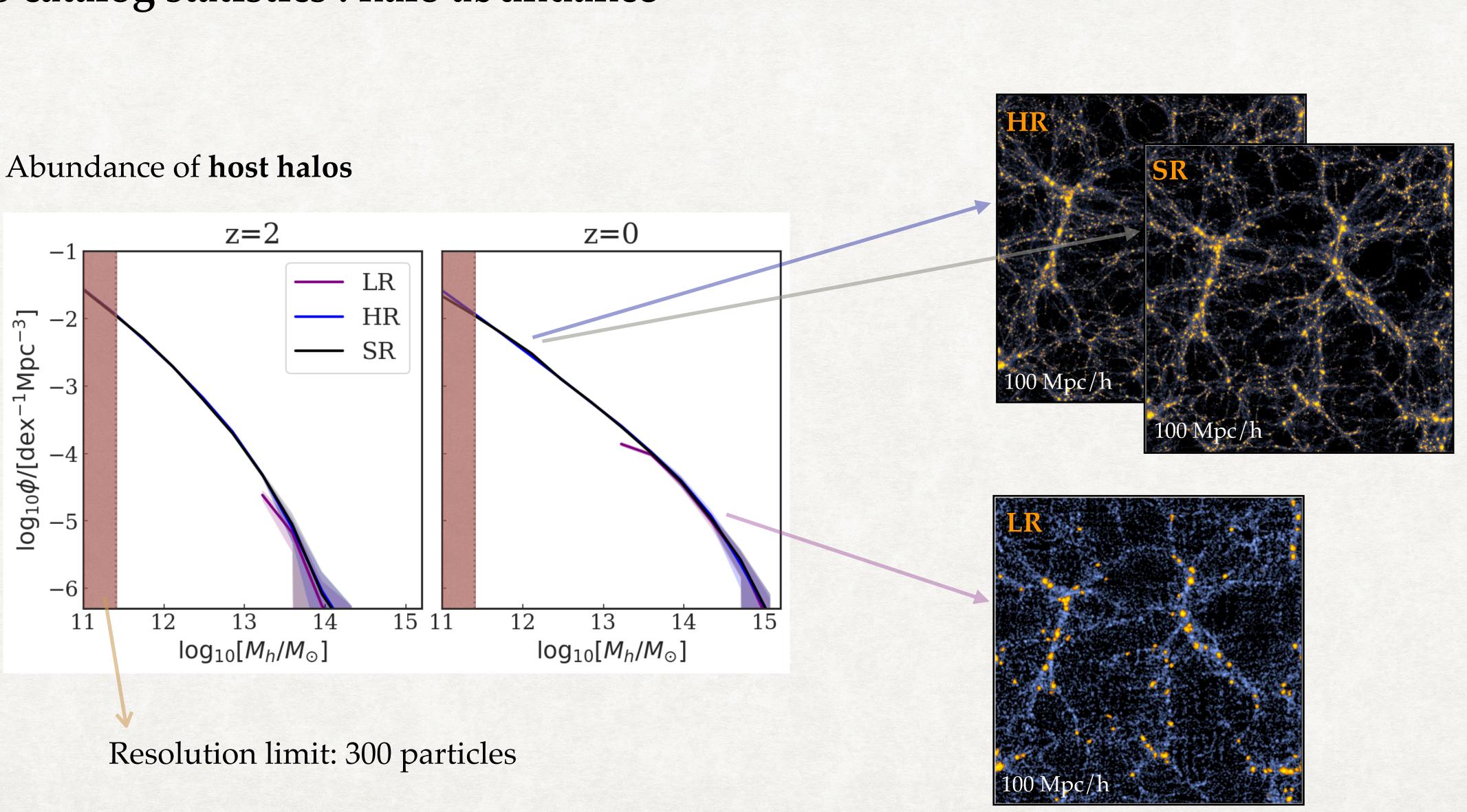
Halo catalogs : subhalos

LR

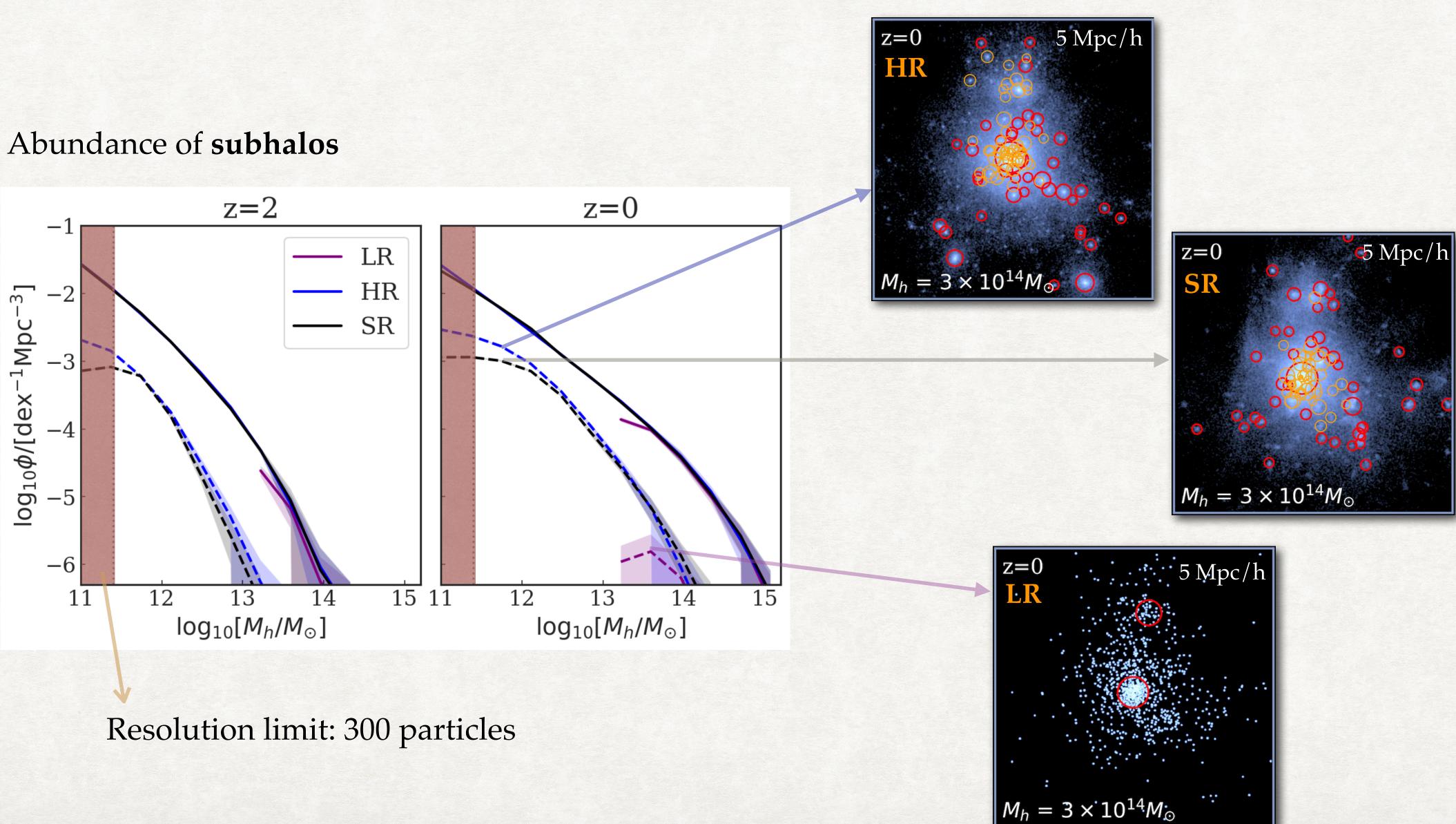


HR

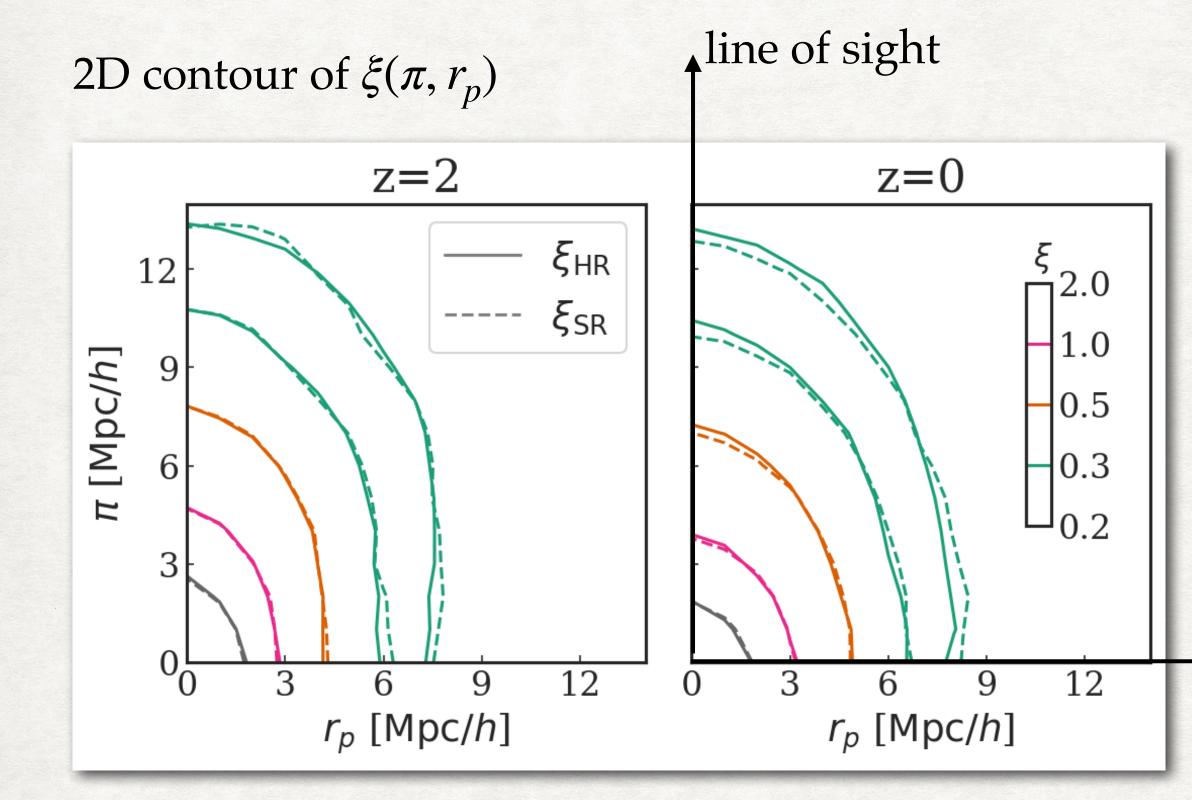
Halo catalog statistics : halo abundance

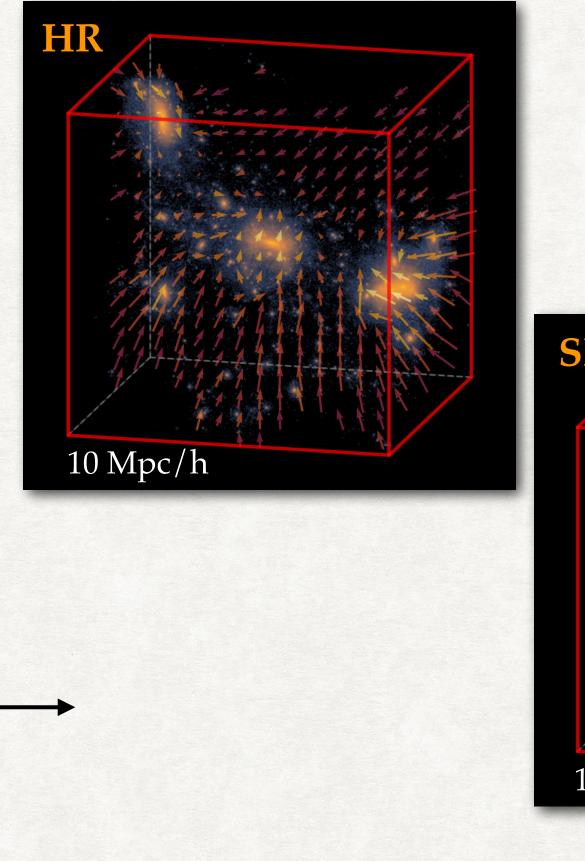


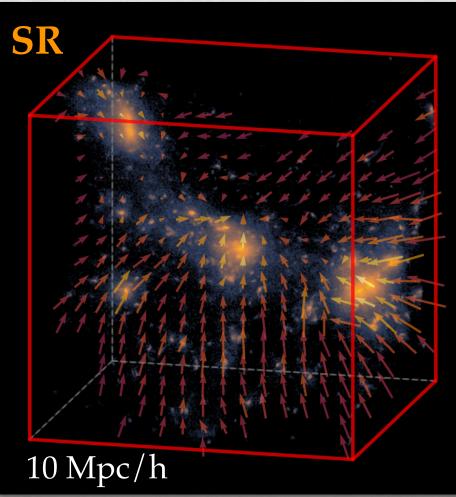
Halo catalog statistics : subhalo abundance



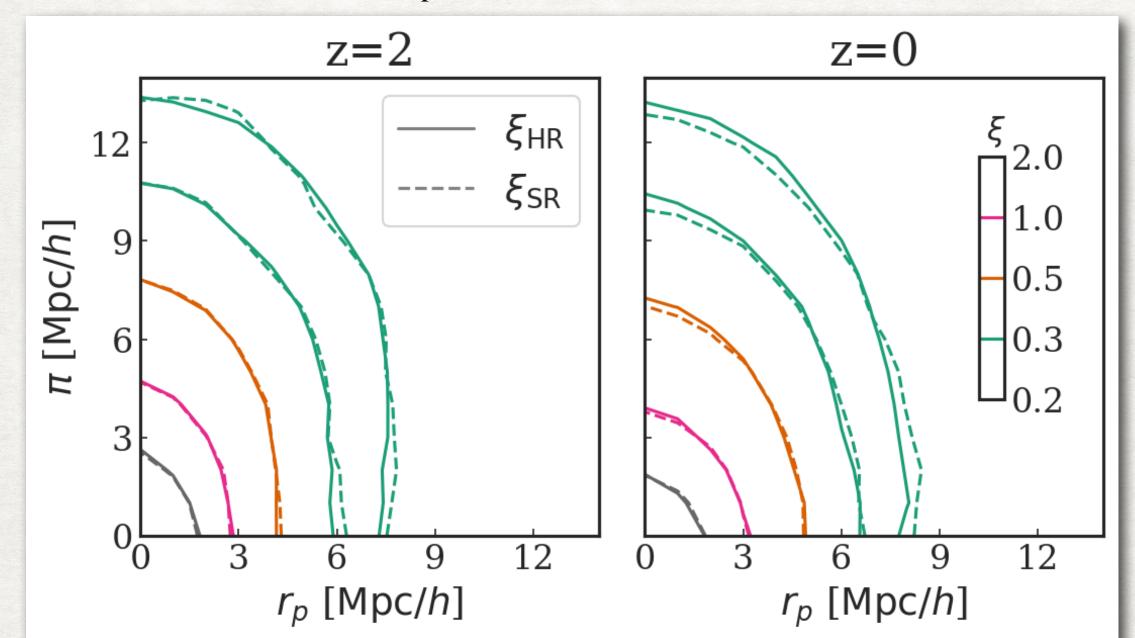
Halo catalog statistics : redshift-space correlation



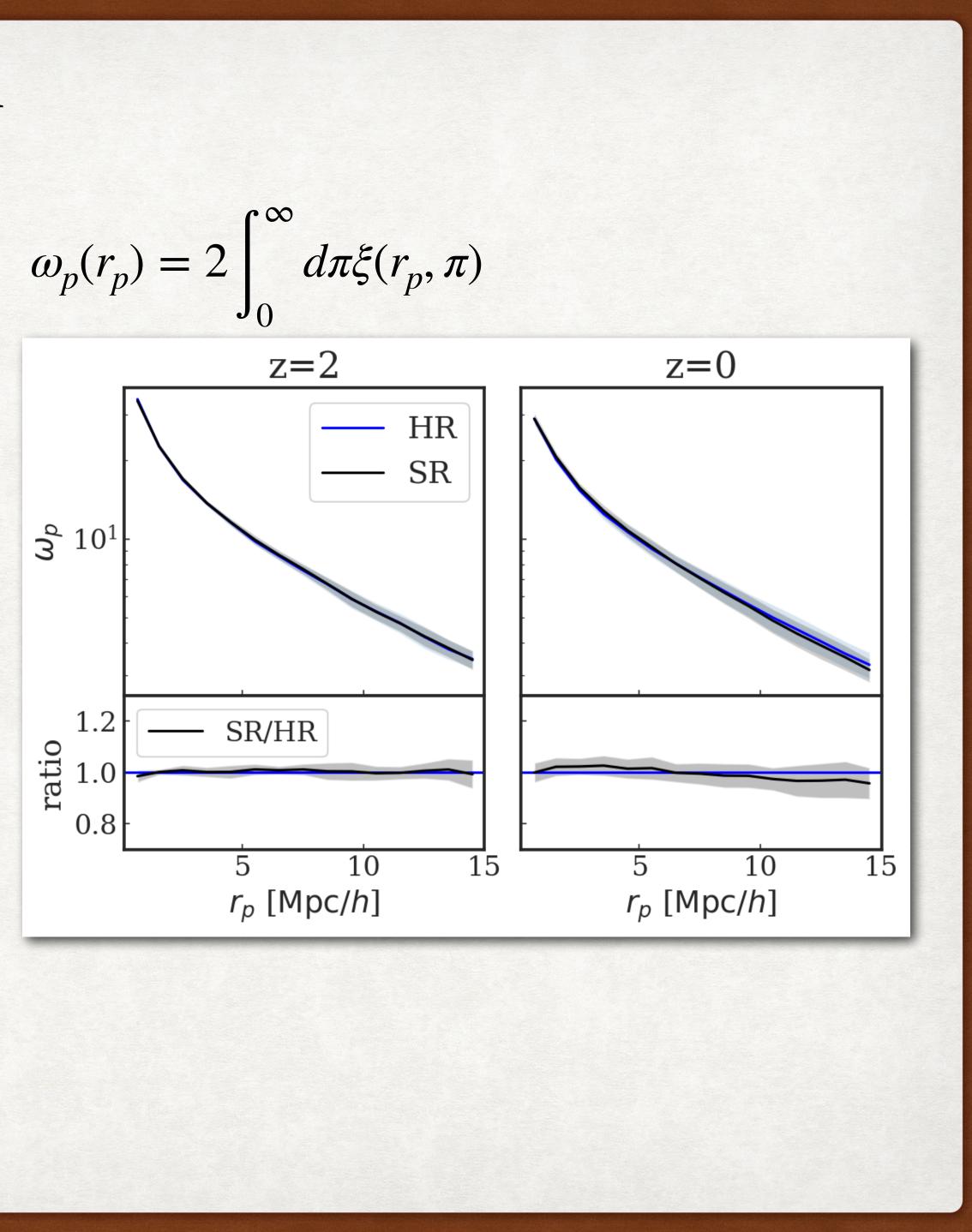


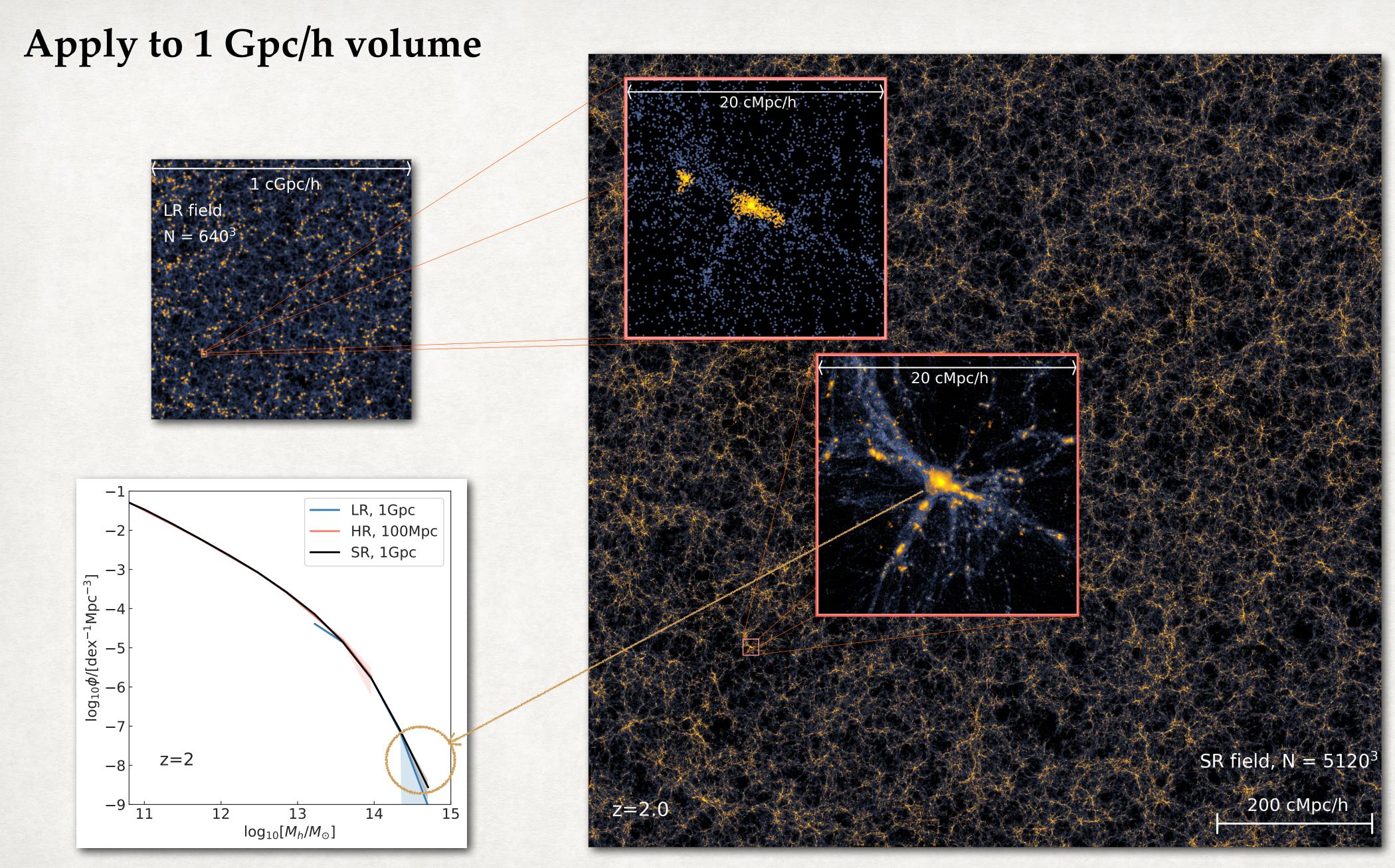


Halo catalog statistics : redshift-space correlation



2D contour of $\xi(\pi, r_p)$





costs ~ 16 hours with a single GPU

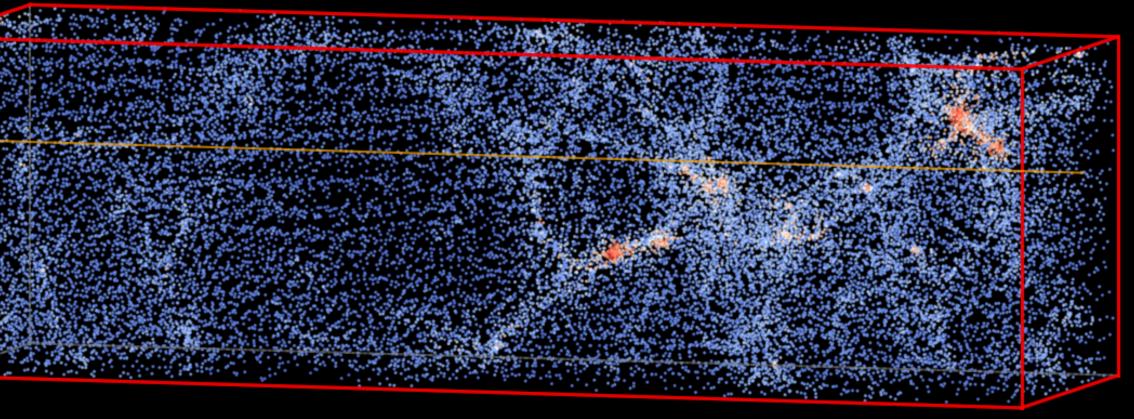
SR for hydro simulations (Preliminary)

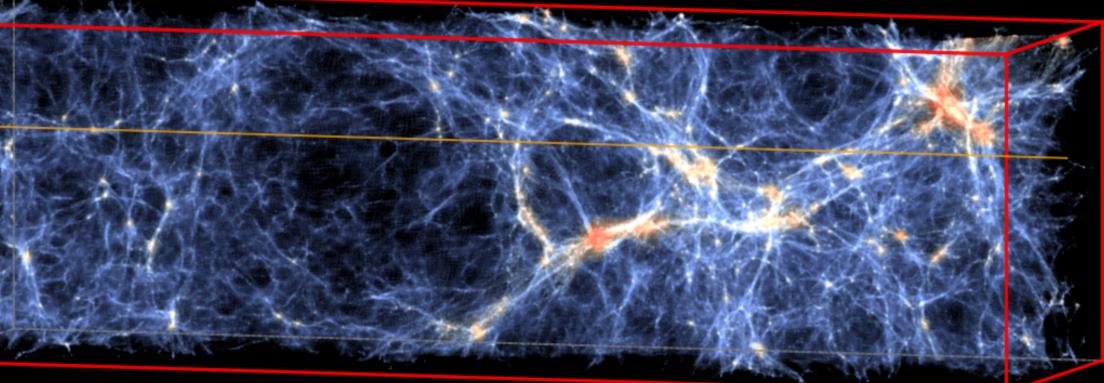
> Test by observables —— Lya spectra

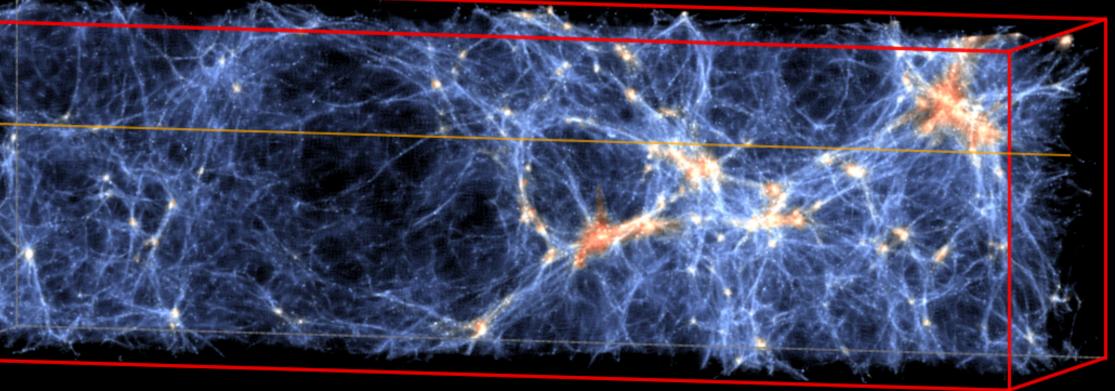
> > density & temperature & peculiar velocity

> > > of IGM gas

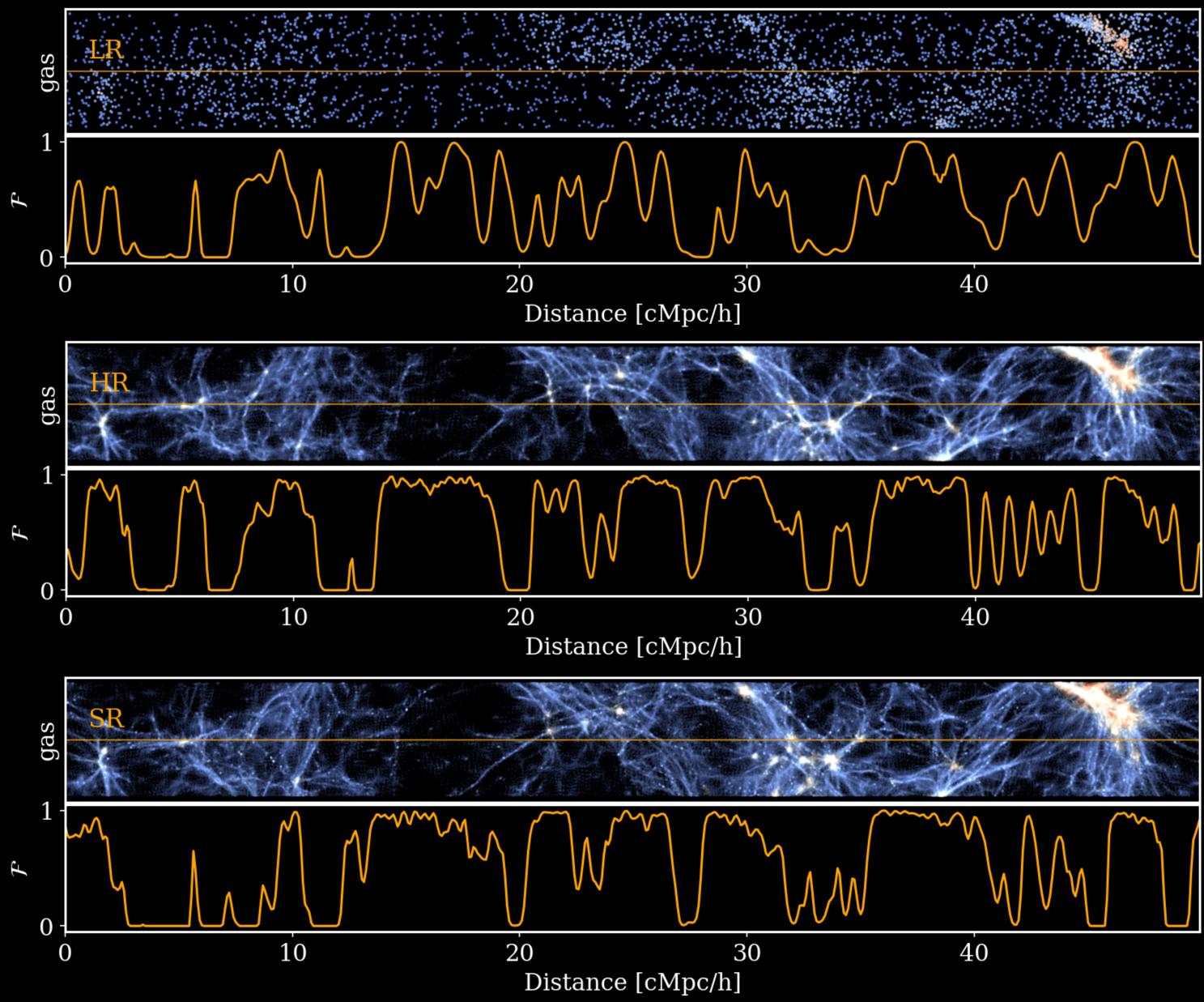
LR

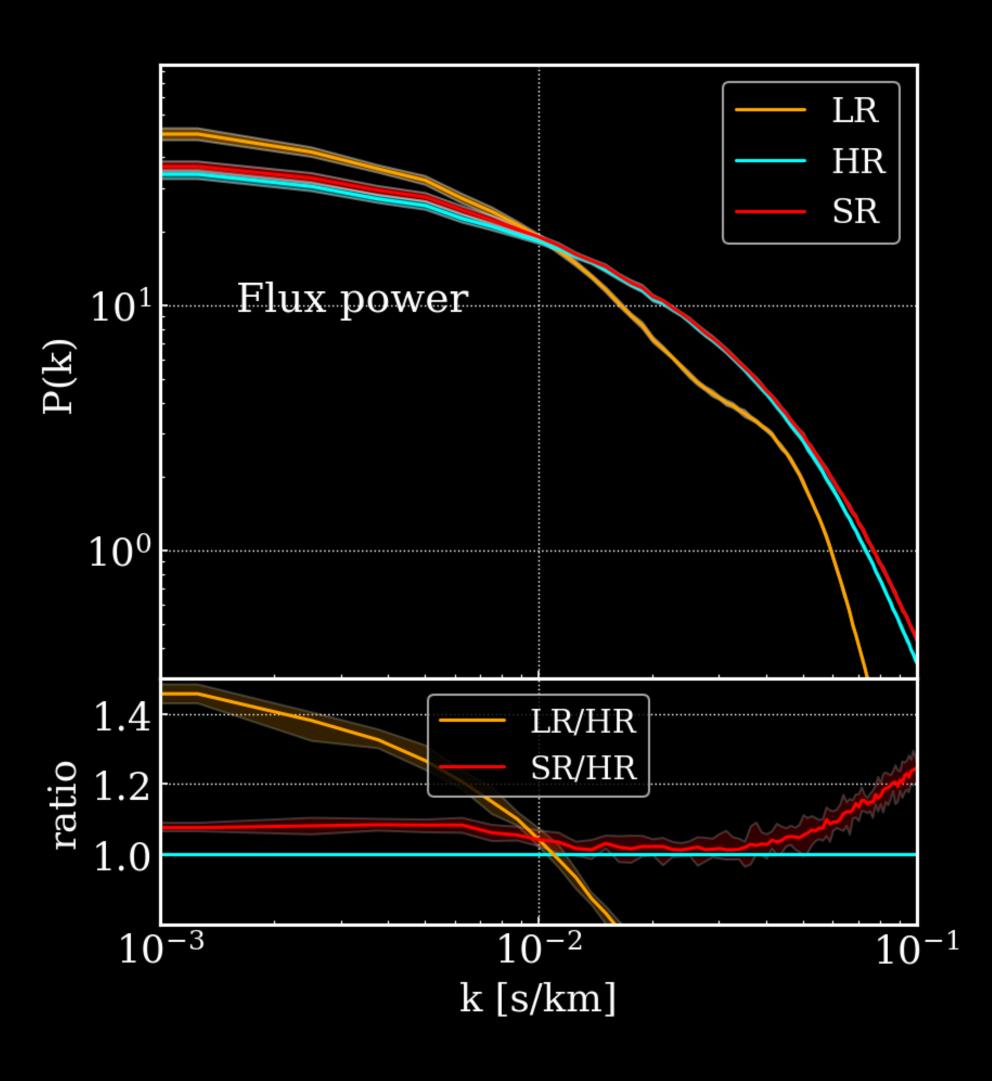






SR for hydro simulations (Preliminary)





Summary

- SR model: generate the full 6D phase space N-body simulation output with 512 higher mass resolution
- The generated SR fields give statistically good agreement with the authentic HR fields
- Show potential to apply the SR model to large cosmic volume and generate mock catalogs

Challenges and future directions

- Improve the performance on small scales / subhalos
- Accommodate for different cosmology and include the redshift dependency
- Development for hydrodynamic simulation

