Increasing a mock's reach with the cosmic web

based on arXiv:2012.10170

Sujatha Ramakrishnan with Aseem Paranjape and Ravi Sheth

Cosmology from Home, 2021

Outline

Introduction:

- 01:42 Why do we need large volume mock catalog?
- 02:48 mocks with N-body simulations
- 03:32 limitations of N-body simulations
- 08:15 how can the cosmic web help to mitigate the limitations
- Method
- 11:42 conditioning on the local cosmic web environment
- 14:14 description of algorithm
- Results
- 15:52 Comparing regular simulation with the mocks created with our algorithm.
- 17:26 Summary

Future Large Sky surveys need large volume mocks

- to compare & connect theory with observations
- to achieve increase in accuracy with increase in precision cosmological parameter estimation
- N-body numerical techniques

N-body simulations

We rely on numerical N-body techniques when

- ullet overdensities much greater than 1
- gravitational collapse becomes non-linear
- analytical approximations no longer valid
- ullet at recent times $z\sim 0$

Limitations

Limitation - Halo assembly bias signal is unresolved

- uncertainities in the 2-pt-correlation function of galaxy clusters
- At fixed halo mass the 2-pt function can be different based on the subsample of properties considered
- this is termed as halo assembly bias
- more commonly dependence of large scale bias

$$b_1 = rac{P_{
m hm}}{P_{
m mm}} igg|_{k_{
m small}}$$
 on the beyond mass halo pro

on the beyond mass halo properties is called assembly bias.

Information in the cosmic web environment

Each halo's environment can be described by the tidal anisotropy $\alpha = \sqrt{\frac{1}{2} \left[(\lambda_2 - \lambda_1)^2 + (\lambda_3 - \lambda_1)^2 + (\lambda_3 - \lambda_2)^2 \right]} / (1 + \delta) \lambda_1, \lambda_2, \lambda_3$ are the eigen values of the tidal tensor.

Tidal anisotropy statistically explains halo assembly bias

- no assembly bias for haloes in a fixed tidal anisotropy environment
- For halos with internal property c, mass m and halo bias b_1 the following holds $p(c,b_1|\alpha,m)=p(c|\alpha,m)p(b_1|\alpha,m)$ Ramakrishnan,et,al 2019
- At fixed halo mass, $b_1 \leftrightarrow \alpha \leftrightarrow c$

Distribution of c

 $\begin{array}{l} \textbf{\textit{p(c}}|\alpha,\textbf{\textit{m})} = e^{-(c-\rho_c\alpha-\mu_c)^2/2\sigma_c^2(1-\rho_c^2)} \\ \mu_c = \text{mean of c , } \sigma_c = \text{standard deviation of c, } \rho_c = \text{pearson correlation between } \alpha \text{ and } c. \end{array}$

Creating Mock Catalogs : Algorithm

- In low resolution simulations where halo properties are not resolved, we can populate haloes with their internal properties by sampling $p(c|m,\alpha)$
- useful for large volume mock catalogs in large scale surveys

$$\begin{array}{l} p(c|\alpha,m)=e^{-(c-\rho_c\alpha-\mu_c)^2/2\sigma_c^2(1-\rho_c^2)}\\ \mu_c=\text{mean of c , }\sigma_c=\text{standard deviation of c, }\rho_c=\text{pearson correlation between }\alpha\text{ and }c. \end{array}$$

Results

mass in Mah

mass in Mah

Summary

- The tidal anisotropy around a halo is the primary driver of the halo assembly bias. As a
 proof-of-concept we show the two point correlation of a sample of shuffled halo properties retains
 the same strength as an unshuffled version.
- Tidal anisotropy is well resolved for haloes whose particle count is between 30-700, where the internal properties are not resolved.
- We develop an algorithm that uses the tidal anisotropy and mass to assign mock halo properties to these unresolved haloes.
- Our algorithm
 - increases a simulation's reach in halo mass and number density by an order of magnitude.
 - improves bias signal by percentages as large as 45% for the 30 particle haloes.
 - can possibly incorporate assembly bias in fast aproximate simulations.