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Future Large Sky surveys need large volume mocks @

@ to compare & connect theory with observations

@ to achieve increase in accuracy with increase in precision -
cosmological parameter estimation

@ N-body numerical techniques
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N-body simulations

We rely on numerical N-body techniques when
@ overdensities much greater than 1
@ gravitational collapse becomes non-linear
@ analytical approximations no longer valid

@ at recent times z ~ 0
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Limitations
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Limitation - Halo assembly bias signal is unresolved C@)
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Information in the cosmic web environment

. : y . . 1
Each halo’s environment can be described by the tidal anisotropy o« = \/i [(>‘2 — )\1)2 + ()\3

A1s A2, A3 are the eigen values of the tidal tensor.

large volume simulation
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Tidal anisotropy statistically explains halo assembly bias C@)

@ no assembly bias for haloes in a fixed tidal anisotropy environment

@ For halos with internal property ¢, mass m and halo bias b; the following holds
p(c, bi|a, m) = p(c|a, m)p(b1|ar, m) - Ramakrishnan,et,al 2019

@ At fixed halo mass, by <> a <> ¢
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Distribution of ¢
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Creating Mock Catalogs :Algorithm

@ In low resolution simulations where halo properties are not resolved, we can populate haloes with
their internal properties by sampling p(c|m, a)
o useful for large volume mock catalogs in large scale surveys

p(cla, m) = e~(c-pea—pe)®/202(1=57)

e = mean of ¢ , o.=standard deviation of ¢, p. = pearson correlation between « and c.
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Results
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Note: We do not use any
information about ¢ > b; for
sampling the mocks but retrieve

¢ <> by naturally.
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Summary

@ The tidal anisotropy around a halo is the primary driver of the halo assembly bias. As a
proof-of-concept we show the two point correlation of a sample of shuffled halo properties retains
the same strength as an unshuffled version.

o Tidal anisotropy is well resolved for haloes whose particle count is between 30-700, where the
internal properties are not resolved.

o We develop an algorithm that uses the tidal anisotropy and mass to assign mock halo properties
to these unresolved haloes.

@ Our algorithm

e increases a simulation’s reach in halo mass and number density by an order of magnitude.
e improves bias signal by percentages as large as 45% for the 30 particle haloes.
e can possibly incorporate assembly bias in fast aproximate simulations.
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