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Future Large Sky surveys need large volume mocks

Vera Rubin Observatory
1/2 sky coverage

to compare & connect theory with observations

to achieve increase in accuracy with increase in precision -
cosmological parameter estimation

N-body numerical techniques

Euclid Survey
1/3rd sky coverage
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N-body simulations

We rely on numerical N-body techniques when

overdensities much greater than 1

gravitational collapse becomes non-linear

analytical approximations no longer valid

at recent times z ∼ 0
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Limitations
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Limitation - Halo assembly bias signal is unresolved

all	haloes
c/a	quartiles

b 1

0

2

4

6

Mvir	(M⊙h-1)
1012 1013 1014

uncertainities in the 2-pt-correlation function of galaxy clusters

At fixed halo mass the 2-pt function can be different based on the subsample of properties
considered

this is termed as halo assembly bias

more commonly dependence of large scale bias

b1 =
Phm

Pmm

∣∣∣∣∣
ksmall

on the beyond mass halo properties is called assembly bias.
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Information in the cosmic web environment

Each halo’s environment can be described by the tidal anisotropy α =

√
1
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)2 +
(
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)2 +
(
λ3 − λ2

)2]/ (1 + δ)

λ1, λ2, λ3 are the eigen values of the tidal tensor.
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Tidal anisotropy statistically explains halo assembly bias

no assembly bias for haloes in a fixed tidal anisotropy environment

For halos with internal property c, mass m and halo bias b1 the following holds
p(c, b1|α,m) = p(c|α,m)p(b1|α,m) - Ramakrishnan,et,al 2019

At fixed halo mass, b1 ↔ α ↔ c
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Distribution of c
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p(c|α,m) = e−(c−ρcα−µc )2/2σ2
c (1−ρ2

c )

µc = mean of c , σc=standard deviation of c, ρc = pearson correlation between α and c.
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Creating Mock Catalogs :Algorithm

In low resolution simulations where halo properties are not resolved, we can populate haloes with
their internal properties by sampling p(c|m, α)
useful for large volume mock catalogs in large scale surveys

p(c|α,m) = e−(c−ρcα−µc )2/2σ2
c (1−ρ2

c )

µc = mean of c , σc=standard deviation of c, ρc = pearson correlation between α and c.

For each
halo

compute mass compute tidal anisotropy

sample
p(c|m, α)
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Results
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Summary

The tidal anisotropy around a halo is the primary driver of the halo assembly bias. As a
proof-of-concept we show the two point correlation of a sample of shuffled halo properties retains
the same strength as an unshuffled version.

Tidal anisotropy is well resolved for haloes whose particle count is between 30-700, where the
internal properties are not resolved.

We develop an algorithm that uses the tidal anisotropy and mass to assign mock halo properties
to these unresolved haloes.

Our algorithm
increases a simulation’s reach in halo mass and number density by an order of magnitude.
improves bias signal by percentages as large as 45% for the 30 particle haloes.
can possibly incorporate assembly bias in fast aproximate simulations.
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