Resonant Self-Interacting Dark Meson & Small-Scale Structure Problems

Yu-Dai Tsar

Research Associate @ Fermilab

w/ Robert McGehee & Hitoshi Murayama

arXiv:2008.08608

Theme of this talk:

Connecting Dark Matter to Standard Model QCD/Meson

Consider observation, theory, and experiments

Finding the most promising testable DM

- Galactic Rotation Curves
- Cosmic Microwave Background (CMB)
- Bullet Cluster
- •

Overwhelming
Observational
Astrophysical + Cosmological
Evidences

From:

https://en.wikipedia.org/wiki/File:Galaxy rotation under the influence of dark matter.ogy under the Creative Commons Attribution-Share Alike 3.0 Unported license.

"Small-Scale" Structure of the Universe

• Study from individual (small) galaxies, including dwarf or spiral galaxies (100 ly - 100 kly), to a larger object like a galaxy cluster

by Lynette Cook/science Photo Library

 as apposed to "large-scale" structures, galaxy clusters comprise a filamentary structure. Typical scales in hundred millions of light years.

Ly: light-year

kly: kilo light-year

Core-cusp problem:

Inner halo: $\rho(r) \sim r^{\alpha}$

Theory prediction: $\alpha \sim -1$ (cusp/NFW profile)

Observations: $\alpha \sim 0$ (core)

Tulin's very clear talk: https://indico.ibs.re.kr/event/47/session/6/contribution/15/material/slides/0.pdf

(DDO: David Dunlap Observatory) Tulin & Yu (in prep); Data from Oh et al [LITTLE THINGS] (2015)

Tulin & Yu, https://arxiv.org/pdf/1705.02358.pdf

Two major explanation:

- 1) DM interact with itself rather strongly (will explain)
- Supernova or other processes push DM from galaxy center(relying on the understanding of complicated galaxy evolution + simulation)

Small-Scale Structure Opportunities!

by Lynette Cook/science Photo Library

My view:

These may be one of the **only chances** we find dark matter effects **beyond gravity**, in **a galactic scale**.

Best case scenario: help us find and understand dark matter

Worst case scenario: provide strong constraints on DM interactions (still interesting!)

Exploration of Dark Matter & Dark Sector

- Astrophysical/cosmological observations are important to reveal the actual story of dark matter (DM).
- MeV GeV regime: thermal dark matter & motivated by many anomalies (inc. small-structure issues)

Self-Interacting Dark Matter (SIDM)

Velocity Dependence

Self-Interacting DM (SIDM), Spergel &
Steinhardt '99 + ...: DM collisions thermalize
the DM particles in inner halo

rate
$$\times$$
 time $\approx \frac{\langle \sigma v \rangle}{m} \rho(r_1) \, t_{\rm age} \approx 1$, ρ is the density, r_1 is the "scattered radius"

Semi-analytically "Calculate" the profile based on different $<\sigma$ v> / m, and then match the profiles to the data

Kaplinghat, Tulin, Yu, arXiv:1508.03339

- LSBs: low surface brightness spiral galaxies
- Diagonal lines are contours of constant σ/m .
- Horizontal line would be $\sigma \propto 1/v$
- DM self-interaction prefers VELOCITY DEPENDENCE!
- At least we learn velocity dependent constraints on cross-sections

Extra Fun: Similarity to Standard Model

Kaplinghat, Tulin, Yu, arXiv:1508.03339

- DM Self-Interaction vs SM hadron interaction
- Similar size of cross-section
- Hadrons are composite particles "made of quarks" and bind by QCD interaction (for the students)

Resonant Self-Interacting Dark Meson (RSIDM)

Tsai, McGehee, Murayama,

arXiv:2008.08608, submitted to PRL

A solution to small-scale structure problems and have interesting experimental signatures

Can be tested in near future

Resonant SIDM

$$m_R = 2 m_{\rm DM} (1 + \Delta),$$

• Δ is small and positive for this talk.

The velocity dependence can be achieved with an **intermediate particle**, **R**, that help provide a

self-scattering cross-section to be a sum of a constant piece, $\sigma 0$, plus a Breit-Wigner resonance.

See, e.g., Chu, Garcia-Cely, Murayama, arXiv: 1810.04709,

Tulin, Tsai, research note 2018

Resonant SIDM

Breit-Wigner resonance

for non-relativistic DM

$$\sigma = \sigma_0 + \frac{4\pi \, S}{mE(v)} \cdot \frac{\Gamma(v)^2/4}{\left(E(v) - E(v_R)\right)^2 + \Gamma(v)^2/4} \,, \qquad E(v) = \frac{1}{2} \frac{m}{2} v^2 \qquad \text{and} \qquad S = \frac{2J_R + 1}{\left(2J_{\rm DM} + 1\right)^2} \,.$$
 symmetry factor

$$E(v) = rac{1}{2}rac{m}{2}v^2 \quad ext{ and } \quad S = rac{2J_R+1}{\left(2J_{
m DM}+1
ight)^2}\,.$$
kinetic energy symmetry factor

constant

$$E(v_R) = m_R - 2m = 2\Delta m.$$

"resonance condition": the collision hits the resonance when $v=v_R$

The width
$$\Gamma(v) = m_R \gamma v^{2L+1}$$
. $\langle \sigma v \rangle = \int_0^{v_{\text{max}}} f(v, v_0) \sigma v dv$, $f(v, v_0) = \frac{4v^2 e^{-v^2/v_0^2}}{\sqrt{\pi} v_0^3}$.

Resonant SIDM: Vector Resonance

Tsai, McGehee, Murayama, arXiv:2008.08608

QCD & Meson Spectrum

Lessons from QCD. $K^+K^- \to \phi$, $B^0\overline{B}^0 \to \Upsilon(4S)$.

- $m_{K^{\pm}(u\bar{s}/\overline{u}s)} \approx 493$ MeV; $m_{\phi(s\bar{s})} \approx 1019$ MeV.
- $m_{B^0} \approx 5279 \text{ MeV}; m_{\Upsilon(4S)} \approx 10580 \text{ MeV}.$
- Inspired by these, we can build interesting DM models inspired by these resonances,

Tsai, McGehee, Murayama, arXiv:2008.08608

Meson Resonances

For $m_Q = m_d$,

we show π^0 as well as the average masses of the first three ρ and ω states. For $m_Q = m_s$, we show K^0 and the first three ϕ 's. For $m_Q = \{m_c, m_b\}$, we show D^0 and D^0 as well as the first four ψ and Υ states, respectively.

Asymmetric Resonant Dark Mesons An asymmetric DM model Connecting DM mystery to SM mystery

Resonant Dark Meson

Model Strategy: linking DM to SM

What we learn from SM?

- B^0 is bound state, $B^0(d\overline{b})$, with one heavy quark b (Q) and one light quark d (q)
- m_b is much larger than $\Lambda_{\mbox{QCD}}$, the QCD scale parameter.
- $\Upsilon(4S)$ is the 4th excited "Quarkonium" state of (bb̄)

Heavy-Quark Mesons: SM vs DM

SM Modeling

DM Modeling

reduced-mass corrections in higher curve

- The "close-to-resonance-ness", $\Delta_n/m_{Q'}\sim n^{-3}$. The smaller this is the easier to hit the resonance
- We want $m_{Q\prime}/\Lambda' > 20$ to go to large n state.
- With n = 10, $\Delta_n/m_{Q'} \sim 10^{-3}$.

Asymmetric Dark Mesons: Ingredients

' means all dark particles now

- One light dark quark u' with mass m_u ,
- Two heavy dark quarks c' and b', setting masses $m_{c\prime}=m_{b\prime}=m_{Q\prime}$ (for simplicity)
- $m_{c'} = m_{b'} > \Lambda' > m_{u'}$ is the mass hierarchy, analogous to QCD
- Forming $B'(u'\bar{b}')$ and $D'(c'\bar{u}')$, and they are **the DM candidates**
- B' & D' abundances set by "asymmetry" (will explain later), $n_c = n_{\bar{b}}$. protected by b', c' quantum numbers

Dark meson mass spectrum

Asymmetric Dark Matter (ADM)

Fact: there are more matter than anti-matter in SM: "asymmetry"

- Asymmetry will set the number density of the DM.
- Because DM mass abundance is ~ 5 times more than that of SM
 DM mass is ~ 5 times of SM particle mass!

$$m_{DM} = 5 m_{Proton} \sim 5 GeV$$

See reviews of asymmetric dark matter, e.g., Petraki & Volkas, 1305.4939 and Zurek, 1308.0338

Asymmetric Dark Matter Parameter

Tsai, McGehee, and Murayama, arXiv:2008.08608

Details left out. See the paper.

Interesting Parameter that everything works:

- $m_{B'} = m_{D'} = m_{ADM} \sim 5 \text{ GeV}, \ m_{Q'}/\Lambda' \sim 20$
- $g_{B'D'}\gamma_{'(10S)} \sim 27$ **needed** for the resonance (SM value, $g_{BB}\gamma_{(4S)} \sim 25$)
- **lattice QCD** can improve our study (ongoing!)
- What happened to the "dark pions" $\pi'(u'\overline{u'})$?

Dark Pion Decays to "Dark Photons"

• Dropped the 'now except for γ , but these are all dark states

- I designed an experimental proposal to search for this dark photon
- $m_{ADM} = m_{B'} \sim m_{Q'} \sim 5 m_P \sim 5 \text{ GeV}$
- $\Lambda' \sim m_{\pi'} > 2 \ m_{\gamma'}$ (analogous to QCD) (assuming the dark neutral pion $\pi'(u'\overline{u'})$ decays to two dark photons γ')
- The lower the mass of the dark photon is, the more likely one hits the resonance, since the mass of the dark matter is fixed to around 5 GeV

Dark-Sector Phenomenology Studying "dark photon" portal

"Dark Sector": DM + "mediators" to SM

$${\cal L}\supset -rac{1}{4}F'^{\mu
u}F'_{\mu
u}+rac{1}{2}m_{A'}^2A'^\mu A'_\mu+\epsilon eA'^\mu J^{EM}_\mu \ {
m kinetic\ mixing}$$

- One of the three 4-dimentional "portals" to dark sectors
- These "portals" help connect dark matter to SM and is essential for GeV or sub-GeV thermal dark matter (see, Lee-Weinberg Theorem, Lee, Weinberg, PRL 77)

The LongQuest Experiment at Fermilab

LongQuest:

Far detectors: much lower background; low cost Not interfering with quark study!

LongQuest: Tsai, deNiverville, Liu, 1908.07525

Dark photon for dark pion decay

- $m_{DM} = m_{B\prime} \sim m_{Q\prime} \sim 5 \text{ GeV}$
- $m_{Q'} \sim 5 \text{ GeV}$
- $m_{O'}/\Lambda' \sim 20$ is desired
- $\Lambda' \sim m_{\pi'} > 2 m_{\gamma'}$
- $m_{\gamma \prime} \sim 100 \text{ MeV}$ is preferred!
- Kinetic mixing $\epsilon = 10^{-9} 10^{-3}$

Ongoing Astro Studies

• Astrophysical studies to distinguish the models, and make predictions of the DM halo profile!

Kaplinghat, Roberts, Valli, **Tsai**, and Yu

Hayashi et al, 2008.02529, PRD 21 suggests that RSIDM could be advantageous for ultrafaint dwarf galaxies (UFD) over other SIDM

Recap: why is this exciting?

- General scenario to naturally give the resonance structure
- Has interesting structure similar SM QCD
- Can easily connect to dark **lattice QCD** study (see, e.g., 1912.06505)
- Has **signatures** that can be searched for in experiments
- **Testable** also in astrophysical studies

My Research Programs

- Develop new/testable models:
 Resonant Dark Matter Models, ELDER / KINDER DM
- Design new experiments: dark sector & millicharge searches in accelerators (also consider analyses with existing experiments), that can be applied to search for many attractive DM / new physics candidates
- My experimental proposals: LongQuest, FerMINI, FORMOSA (will talk more in 10 mins discussion!)
- Develop new cosmology & astrophysics studies:
 DM in neutron star, GW170817 as PBH event, and more...

What do I do in **Particle Physics Renaissance**

Hitoshi Murayama By Michael Banks in Tokyo, Japan

An illustration of the FerMINI experiments utilizing the NuMI facility. Adapted by Yu-Dai Tsai from Zarko Pavlovic's photo and milliQan detector, 1607.04669 (milliQan col.)

New models and theories

Learning machine learning on the side

Crab Nebula, NASA, ESA, Hester &. Loll (ASU)

Collaborate with the **experts**

FORMOSA at LHC, Foroughi, Kling, Tsai

by Chantelauze, Staffi, and Bret

Be creative and make connections between subjects 31

Let's find dark matter! Thank you!