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Cosmic Microwave Background

* Radiation from very early epoch

* Enormous source of information

* Helped develop ACDM
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Kinetic Sunyaev—Zeldovich*
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Bispectrum Formalism

The kSZ effect induces a bispectrum of the form (5,6, T)

The signal-to-noise peaks in the squeezed limit (k; < kg) where

P v(kL)
(5,8,T) gk P, (k,)
L

Several commonly used kSZ estimators can be derived from the bispectrum.

The quadratic estimator v, (Deutsch et al. 2017) which reconstructs radial velocity
field is particularly well suited for cosmology.

Smith, Madhavacheril, Munchmeyer, Ferraro, UG, Johnson 1810.13423



Science Case

Probes both large and small scales with high precision
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On large-scales, kSZ constrains Gpc scale On small-scales, kSZ constrains P, at
modes better than galaxy surveys 1-halo scales with high precision

Gist: kKSZ is a very promising tool for both cosmology and astrophysics!
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Quadratic Estimator v,

* Modulation of small-scale o, by a large-scale v,

Tis (D) = v (k)b (kg) = (0,(k)T(D)) 5y 1, o v, (Kp)

* QE reconstructs radial velocity v, by combining CMB map with galaxy surveys with
optimal filters and summing over small-scales.

J Phy dMl Pk

P =, (K (27)3 (2m)? Ptot(k)CTW ¢

[
5% (ko) T*(1) 2rm) 8> (k + kg + )
L

» Reconstruction noise, or N'-bias (nomenclature motivated by CMB lensing)
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Reconstruction with simulations

The scales involved are:

[
[ ~5000; k;, < — ~0.01 Mpc™!; kg ~ 6(1) Mpc™!
y L

We use Quijote simulations : Box-size = 1 A~!Gpc; Particles=1024°; z=2

0, = Oy, (assuming one galaxy per halo, leads to DESI like shot noise)
Liiy = Tisz + 1orimary ¥ Tooise (assuming Electrons trace DM (0, = 0,,))
— (I + 1)6)]”2whm : :
T, . ()= sexp T ; Sy = 0.5 pk arcmin; 6., = 1 arcmin

Reconstruct radial velocity with quadratic estimator v, ~ o, X T . .



Results: Correlation

Correlation between reconstructed field
and true velocity field tells us about the

quality of reconstruction.

The correlation coefficient is given by

For k < 0.01 Mpc™!,
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agrees well with leading-order theory, but not exactly=> extra noise terms



Power spectrum

* The reconstructed power spectrum
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parameter inference when
analyzing data.

* We revisit the full noise calculation using halo model



Revisiting noise calculation

Schematically, QE in underlying fields can be represented as
ﬁr ™~ 5gT ™~ (ég(TkSZ T Tother)) ™~ 5g(5evr T Tother) ™~ (5géevr) T (5gT0ther)

Powerspectrum :
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N — bias : Expressed in closed form integral expression. Can also be estimated by
doing Monte-Carlo over clever contractions of gaussian realization. Subdominant!

N©2) _ pias :
* Comes from non-gaussian nature of underlying fields.

* Integral over 6-point function which we model using the halo model.



NG bias

An integral over the 6-point term

(0, (k1)0,(kp)b,(k3)0 (kg )V, (ks)V,(Ke)) e Diagrammatic Representation
We assume v, is a linear-scale field [ k) nlke) ) [ 6.(0)
We develop Feynman diagram b= )\ /L\ P2 = | oalle)
rules for calculation of higher-point \Gye) el Gy(ka) bl \ 3e(ka)
function in the halo model. (Sellr)  delle) i) [ dclke)

. Ds = >< Dy =
22 terms in total!
\ do(k1)  Gy(ks)  vn(ks) ) \ dy (k1)
. [ 6y (ks) vr (ko) )
Integration: b (K1)
D5 = | dc(ko)
Considerations: Shot noise dominant | 5,4 0. (ks)

on small scales + velocity being on

linear scales = 3/22 terms significant D1, D3, D4 contribute

vr(ks) )
0, (ko) i
5g(k1))
Se(ke)  vp(ke) \
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Reconstruction Noise

* We find that our halo model calculation (with some approximations) is able to
explain the excess noise in both magnitude and shape.
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Application



Primordial Non-Gaussianity

Phenomenological parameterization of non-gaussianity.

Dy = Dg + fiy (@) — (Pg)°]
Dalal et. al. 2008 showed that f; # 0, adds a scale-dependent bias term to galaxy bias
2fi8.by = 1)

bh — bg | a(k)

Seljak (2009): Use multiple tracers to achieve sample variance cancellation (SVC).

Requirement : High correlation between tracers (we have r>0.97)



Our Likelihood Model

* We build a mode based likelihood using large-scale modes of halo density and velocity fields

» Our data vector: D = [5F, ?¥]

. . DTC—ID
. 3-parameter likelihood model: ~ Z(b,, b, fy;) x exp| — ;
I
T k faH\ [ b, + 2 (5. — 1)
where. C = S ! P, = (bv rfCZl )( g G )P mm(K)
th va 4 N(O) k Cl(k)

28 by — D\ k. faH \ >
Phh = (bg T — C{(ki ) Pmm(k) va — (bv ”;:621 ) Pmm(k)



fnr = 0Ocase

We compose a joint likelihood from the
100 high resolution simulations.

:5h7 @r]
:5h7 5m]

Recover unbiased f,; = 0 when using
reconstructed velocity fields.

Improves constraints relative to halo-only
treatment which shows sample variance
cancellation is happening.

Reconstruction+SVC works!




fnr # 0Ocase

» We study 4 GADGET-2 simulations with non-gaussian potential (f,; # 0)

Here again we recover unbiased estimates of f5;
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Fisher analysis

» Results from ensemble of 100 simulations with f,; = 0 agrees with gaussian Fisher
estimate within few percent.

* This validates the gaussian likelihood model thus demonstrating another desirable
quality of reconstructed field.
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Conclusion

We show using simulations that kSZ velocity reconstruction works!

High correlation with linear velocity is achieved.
Powerspectrum has new additional noise terms: N\ and N/
N pias is of the same order as NV-bias, must be included in analysis.

We derive the non-gaussian 6-point N®?-bias in the halo model

Our ‘end-to-end” MCMC pipeline shows that using a gaussian likelihood model we
can achieve SVC and improve constraints on fy; using kSZ velocity!

Lots of avenues to pursue in the near future!!









kSZ estimators

* Alot of effort has been put into developing

estimators.

* Several seemingly different cross-correlation
estimators have been designed

* Pairwise estimator
* Velocity template
* Velocity reconstruction

* They have been successful in

detecting the kSZ signal at a few sigma

s
D‘%’ 0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140
Comoving Separation (Mpc)

Pairwise kSZ detection from Hand et. al. 2012



The estimator reconstructs
(v,) = by™ (at LO)

Bias reflects uncertainty in modelling electron- of
halo connection aka optical-depth degeneracy

J dkF (k) Py (k)
Y [ dkF (k) Pire(k,)

Bias estimate from simulations is

b

ViV

b. =
' PV,,V,,

For k ~ 0.01 Mpc™!,
b, — 1 when Pgid = P,,"

[arXiv:1810.13423]

Results: Bias
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https://arxiv.org/abs/1810.13423

Powerspectrum Covariance

 For a gaussian field, Corr(i, j) = 55

COIT(P@T(]C), P@T(kﬂ
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Kinetic Sunyaev-Zeldovich

So far detected in cross-correlation with LSS at a few-o

High significance detection imminent thus potentially enabling very interesting
science.

A lot of effort has been put into developing estimators
Various estimators:

» Pairwise estimator [Hand et. al. 2012 and references therein]
* Velocity template [Ho et. al. 2008, Schaan et. al. 2020]

* Velocity quadratic estimator [Terrana et. al. 2016, Cayuso et. al. 2017]
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Implication for upcoming surveys:



Secondary Anisotropies

» Sourced by scattering of CMB off intervening structure between the surface of last
scattering and us.

» Examples include:

» CMB lensing [Sensitive to €2, 2m, , o]
* Sunyaev-Zeldovich (SZ) effect
* Thermal Sunyaev-Zeldovich(tSZ)
» Kinetic Sunyaev-Zeldovich (kSZ)
* Patchy kSZ
e Late-time kSZ




Sample Variance Cancellation

» Seljak 20009: For a phenomenon like primordial non-gaussianity that affects the
clustering of tracers, instead of looking at its signature in the powerspectrum of
stochastic tracer field which suffers from fundamental sample variance, one can
instead look at the relative clustering bias of 2 tracers which circumvents sample
variance limit and allows for arbitrary precision in principle. This is the idea of
sample variance cancellation(SVC)



Velocity Quadratic Estimator

New probe of LSS cosmology
Offers a neat way of using kSZ effect for cosmological studies
Extremely useful in constraining physics which affects largest-scales

Can probe models of DE, modified gravity and sum of neutrino mass
modulo optical depth degeneracy.

One application we explore: Constraining primordial non-gaussianity



Velocity Quadratic Estimator

Modulation of small-scale 0, by a large-scale v,
I)y~T,,,, )+ v.(k)o,ks)
Implies

(0,(k)T(D)) 3 K, & Vi(kp)

In words, one can combine CMB map with galaxy surveys at small-scales to
reconstruct large-scale radial velocity modes.

The scales involved are:

[ ~ 5000

[
k, < — ~0.01 Mpc™!
YL
ke ~ O(1) Mpc™!



Revisiting Noise calculation



Simulations

* Quijote Simulations [Villaescusa-Navarro 2019]:
* N-body simulations with gaussian initial condition using GADGET-2
» Box-size=1 h~'Gpc ; Particles=1024"

* Our ansatz:

» Snapshot geometry; 0, = 0y; 0, = 9,

—I(l + DO,
—fh] ;S = 0.5 pk arcmin; O, = 1 arcmin

N(l) = s’exp 2T

e [ . =T

sim primary

noise



Primordial Non-Gaussianity

* A model for non-gaussianity
Dy = Dg + fy [(Pg) — (Pg)”]

* vz = O under simple models of inflation. Single-field slow roll inflation with canonical
kinetic terms and Bunch-Davies vaccua.

» Multi-field inflation induces non-zero f,;

* fyz # 0 induces non-zero bispectrum under squeezed configuration in CMB

* Also induces bispectrum in LSS modulo late-time non-gaussianity



