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- 2 pt functions capture all the information for a Gaussian field 

- Gravitational structure formation induces non-Gaussianity 

- Potentially much more information in the NG statistics 
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Mass mapping algorithms

Jeffrey et. al. 2021  
DES-Y3 mass maps

Drawbacks of  mass mapping algorithms: 

• Wrong statistics 
• Correlations between different 

redshift bins are not considered 
• No uncertainty estimates



Map-based inference
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Compare at 
field level

Can we have a unified framework to 
simultaneously make (improved) mass maps 

and constraint cosmological parameters?

If we had the probability distribution for the full 
field, ! , we can capture all the available 

information in the maps 
P(κ |Θ)

Improved 
algorithm



Lognormality of  convergence field

• 3D density field can be modelled with a lognormal distribution (Coles & Jones 
93). Can enforce !  

• The convergence field can be well described by a multivariate lognormal field. 
Used for state-of-the art mocks. 

• Captures the (correlated) 2 point and 1 point statistics of  the map very well.

δ > − 1

Clerkin et. al., 2017



Forward modelled mass mapping

Bayes Theorem: !P(κi |γobs
i ) ∝ P(γobs

i |κi)P(κi)

Likelihood:  

!L(κi) ∝
Npix

∏
i=1

exp[ −
1
2

(γi(κ) − γobs
i )2

2σ2
ϵ ]

Prior:  

Sensible prior on the 
! field, e.g,  

Lognormal prior
κ

- Treat !  as parameters to be inferred 

- Very high  ( !  ) dimensional 
parameter space. 

- We can sample from the posterior using 
HMC

κi

Nbins × Npix - Other forward modelled methods: 
- Weak lensing (Alsing et. al. 2017, 

Porqueres et. al. 2021) 
- CMB delensing (Millea et. al. 2020) 
- 3D IC reconstruction (Jasche, et. al. 

2013, Modi et. al., 2018, …) 
- many more…



KaRRMa mass mapping algorithm

• KaRRMa: Kappa Reconstruction 
for Mass Mapping (arXiV: 
2105.14699) 

• Forward-modelled reconstruction 
with lognormal prior on 
convergence field 

• Recovers the correct one-point and 
two-point functions in the mass maps

Fiedorowicz et. al. (2105.14699)



Going beyond KaRRMa

• In KaRRMa, parameters are !  values in pixel in real space !  dense 
covariance matrix !  Prohibitive memory requirement.  

• Tomographic mass mapping. Include cross redshift bin correlations in the 
mass mapping algorithm. 

• Sample cosmology simultaneously.

κ ⟹
⟹



Going beyond KaRRMa

• In KaRRMa, parameters are !  values in pixel in real space !  dense 
covariance matrix !  Prohibitive memory requirement.  

• Tomographic mass mapping. Include cross redshift bin correlations in the 
mass mapping algorithm. 

• Sample cosmology simultaneously.

κ ⟹
⟹

P(κi) ∝ exp[ −
1
2

κiC−1κj]
• If  !  are the convergence value in real space, !  is dense (!  independent 

values) 

• For Gaussian fields, in Fourier/harmonic space, !  is diagonal (!  independent 
values)

κi C Npix × Npix

C Npix

✦ Solution: Sample Fourier/harmonic modes



Map sampling



Summary statistics of  the maps
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Going beyond KaRRMa

• In KaRRMa, parameters are !  values in pixel in real space !  dense 
covariance matrix !  Prohibitive memory requirement.  

• Tomographic mass mapping. Include cross redshift bin correlations in 
the mass mapping algorithm. 

• Sample cosmology simultaneously.

κ ⟹
⟹



Including correlations in mass mapping
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Going beyond KaRRMa

• In KaRRMa, parameters are !  values in 
pixel in real space !  dense covariance 
matrix !  Prohibitive memory 
requirement. 

• Tomographic mass mapping. Include 
cross redshift bin correlations in the mass 
mapping algorithm. 

• Sample cosmology simultaneously.

κ
⟹

⟹



Forecasts for future surveys

LSST-Y10 like !   

5 bin tomography  

Resolution: 10 arcminute) 

Area ~ 1000 sq degrees 

- ! -!  Figure of merit gain: 
!  

- !  gain:! improvement

n(z)

σ8 Ωm
> 90 %

S8 ∼ 20 %



Forecasts for future surveys 
(resolution effect)

FoM gain: !  
!  gain: !

100 %
S8 40 %

FoM gain: !  
!  gain: !

40 %
S8 20 %



• Substantial improvement over power spectrum inference for all 
surveys at all resolution.  

• Breaks ! -!  degeneracy  

• !  times improvement over power spectrum in the ! -!  figure of  
merit at 5 arc minute resolution for all surveys. 

Ωm σ8

∼ 2 Ωm σ8

Forecasts for future surveys
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Outlook

• Map-based inference with lognormal maps gives us a 
principled way to infer cosmological parameters from weak 
lensing datasets. 

• ! improvement in ! -!  Figure of  merit for future surveys 
by including the non-Gaussian information 

• Provides a way for combining other probes, e.g, 2D galaxy 
clustering/CMB lensing/tSZ/any other correlated maps at the 
map level 

• Can be used for uncertainty quantification in cross-correlation 
studies

∼ 2 × σ8 Ωm



Thank you!


