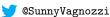
Early- and late-time consistency tests of ACDM and implications for the Hubble tension


Sunny Vagnozzi

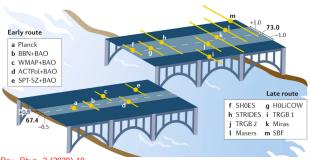
Newton-Kavli Fellow @ KICC, University of Cambridge

≤ sunny.vagnozzi@ast.cam.ac.uk

www.sunnyvagnozzi.com

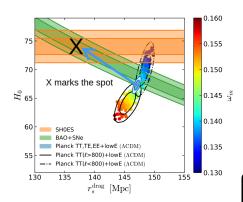
sunnyvagnozzi

Cosmology from Home 2021, 5-16 July 2021



Looking at the Hubble tension ocean with different eyes

Credits: Riess, Nat. Rev. Phys. 2 (2020) 10


Why does Λ CDM fit data so well? Do we really need new physics? If so, at what time(s), and with what ingredients?

The Hubble tension and new physics

Hubble tension appears to call for (substantial) early-time new physics...

Increasing H(z) just prior to z_* : "least unlikely" proposal?

Example: early dark energy (some debate as to how much it works)

Featured in Physics Editors' Suggestion

Early Dark Energy can Resolve the Hubble Tension

Vivian Poulin, Tristan L. Smith, Tanvi Karwal, and Marc Kamionkowski Phys. Rev. Lett. **122**, 221301 – Published 4 June 2019

Editors' Suggestion

Early dark energy does not restore cosmological concordance

J. Colin Hill, Evan McDonough, Michael W. Toomey, and Stephon Alexander Phys. Rev. D 102, 043507 – Published 5 August 2020

Need $\approx 12\%$ (!!!) EDE around $z_{\rm eq}$

Why is there no **clear** sign of new physics in CMB data alone?

Early-time consistency tests of ΛCDM

Why is there no clear sign of early-time new physics in CMB data alone?

Why does Λ CDM fit CMB data so well?

(Early-time) Consistency tests of ΛCDM

The early ISW (eISW) effect

Around recombination: Universe not fully matter dominated \implies residual decay of gravitational potentials \implies elSW effect sources anisotropies

$$\Theta = \int_0^{\eta_0} d\eta \left[\underbrace{\propto g(\Theta_0 + \Psi)}_{\text{Sachs-Wolfe}} + \underbrace{\propto gv_b \frac{d}{d\eta}}_{\text{Doppler}} + \underbrace{\propto e^{-\tau}(\dot{\Psi} - \dot{\Phi})}_{\text{ISW}} + \underbrace{\propto (g\Pi + [g\Pi])}_{\text{Polarization}} \right] j_\ell(k\Delta\eta)$$

$$\Theta_{\ell}^{\rm ISW}(k) = \underbrace{\int_{0}^{\eta_m} d\eta \ e^{-\tau} \left(\dot{\Psi} - \dot{\Phi}\right) j_{\ell}(k\Delta\eta)}_{\rm early\ ISW} + \underbrace{\int_{\eta_m}^{\eta_0} d\eta \ e^{-\tau} \left(\dot{\Psi} - \dot{\Phi}\right) j_{\ell}(k\Delta\eta)}_{\rm late\ ISW}$$

(A substantial amount of) New physics increasing H(z) around $z_{\rm eq}/z_{\star}$ should leave an imprint on the eISW effect!

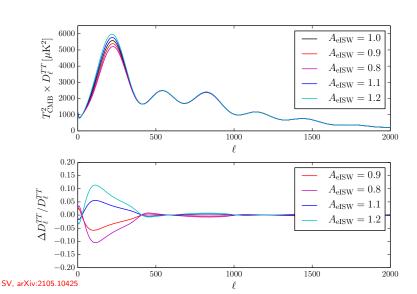
eISW consistency test

Consistency tests of Λ CDM from the early ISW effect: implications for early-time new physics and the Hubble tension

Sunny Vagnozzi^{1, *}

¹Kavli Institute for Cosmology (KICC) and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom

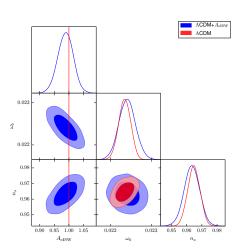
Introduce scaling amplitude/fudge factor $A_{\rm eISW}$ SV, arXiv:2105.10425


$$\Theta_{\ell}^{\mathsf{elSW}}(k) = \mathcal{A}_{\mathsf{eISW}} \int_{0}^{\eta_{m}} d\eta \, e^{-\tau} \left(\dot{\Psi} - \dot{\Phi}\right) j_{\ell}(k\Delta\eta)$$

Consistency check: within ΛCDM , is the data consistent with $A_{\rm eISW}=1$?

Looks familiar? It should remind you of $A_{\rm lens}$ Calabrese et al., PRD 77 (2008) 123531

$$C_{\ell}^{\phi\phi} o A_{\mathrm{lens}} C_{\ell}^{\phi\phi}$$


eISW consistency test

7 / 20

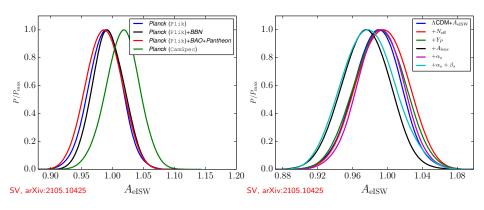
eISW consistency test

Is the data consistent with $A_{\rm eISW}=1$? (7-parameter $\Lambda {\rm CDM} + A_{\rm eISW}$)

Yesl

Parameter	Planck		
T di diliotoi	ACDM	$\Lambda { m CDM} + A_{ m eISW}$	
$100\omega_b$	2.235 ± 0.015	2.241 ± 0.020	
ω_c	0.1202 ± 0.0013	0.1203 ± 0.0014	
θ_s	1.0409 ± 0.0003	1.0409 ± 0.0003	
τ	0.0544 ± 0.0078	0.0541 ± 0.0078	
$\ln(10^{10}A_s)$	3.045 ± 0.016	3.046 ± 0.016	
n_s	0.965 ± 0.004	0.963 ± 0.005	
$A_{ m eISW}$	1.0	0.988 ± 0.027	
$H_0 [\mathrm{km/s/Mpc}]$	67.26 ± 0.57	67.28 ± 0.62	
Ω_m	0.317 ± 0.008	0.317 ± 0.009	

SV. arXiv:2105.10425


Other parameter constraints very stable, no more than $\approx 0.3\sigma$ shifts

SV, arXiv:2105.10425

elSW consistency test: robustness of results

External data/different likelihoods

Extended parameter space(s)

Take-away message: ACDM (robustly) aces the eISW consistency test!

Implications for early-time new physics: EDE case study

JCAP 2105 (2021) 072; see partial rebuttals in: Murgia et al., PRD 103 (2021) 063502; Smith et al., arXiv:2009.10740

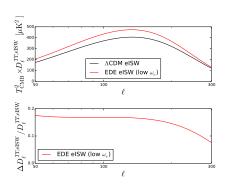
High H_0 EDE fit to CMB at the cost of increase in $\omega_c \to$ worsens tension with WL/LSS data? Hill et al., PRD 102 (2020) 043507; Ivanov et al., PRD 102 (2020) 103502; D'Amico et al.,

SV. arXiv:2105.10425

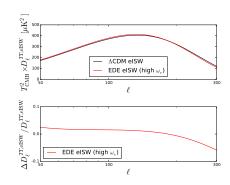
Parameter	ΛCDM	EDE (high ω_c)	EDE (low ω_c)
$100\omega_b$	2.253	2.253	2.253
ω_c	0.1177	0.1322	0.1177
$H_0 [{ m km/s/Mpc}]$	68.21	72.19	72.19
τ	0.085	0.072	0.072
$\ln(10^{10}A_s)$	3.0983	3.0978	3.0978
n_s	0.9686	0.9889	0.9889
$f_{ m EDE}$	-	0.122	0.122
$\log_{10} z_c$	-	3.562	3.562
θ_i	-	2.83	2.83
n	-	3	3

7000 100	
T C S S S S S S S S S S S S S S S S S S	100 300 1000 2000
$\begin{array}{c c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	
QD -0.05	1

100


300

1000


Implications for early-time new physics: EDE case study

Let's extract only the eISW contribution to temperature anisotropies...

Low ω_c

High ω_c

Almost 20% eISW excess!

No more than \lesssim 3-5% eISW excess

Generic to models increasing pre-recombination H(z), not just EDE

Recap: eISW effect and early-time new physics

- Early-time new physics should leave an imprint on eISW effect
- ullet Consistency test: in Λ CDM, *Planck* highly consistent with $A_{
 m eISW} pprox 1$
- Challenge for early-time new physics, need to match this prediction
- ullet Example: EDE compensates extra eISW with increase in ω_c
- Generic problem for models increasing pre-recombination H(z)
 - ⇒ need extra ingredients?
 - \implies relation to S_8 discrepancy?
 - \implies can't go beyond $H_0 \sim 70$ with early-time new physics?
 - \implies related: H_0 from BOSS DR12 P(k) inferred from k_{eq} and r_s consistent: no evidence for non-standard pre-recombination physics?

Philcox et al., PRD 103 (2021) 023538

Why aren't there clear signs of substantial early-time new physics solving the Hubble tension?

Late-time consistency tests of ΛCDM

Is ΛCDM really all there is at late times?

(Try to) Test ACDM making no assumptions about early-time physics

Learn something about H_0 in the process?

Old astrophysical objects at high redshift

Historically (1960s-1998) high-z OAO provided the first hints for the existence of dark energy ($\Omega \neq 1$, $\Omega_{\Lambda} > 0$)

A 3.5-Gyr-old galaxy at redshift 1.55

James Dunlop, John Peacock, Hyron Spinrad, Arjun Dey, Raul Jimenez, Daniel Stern & Rogier Windhorst

Nature 381, 581-584 (1996) | Cite this article

Conflict over the age of the Universe

M. Bolte & C. J. Hogan

Nature 376, 399-402 (1995) | Cite this article

The observational case for a low-density Universe with a non-zero cosmological constant

J. P. Ostriker & Paul J. Steinhardt

Nature 377, 600-602 (1995) | Cite this article

What can OAO do for cosmology in the 2020s?

Cosmology with old astrophysical objects

Implications for the Hubble tension from the ages of the oldest astrophysical objects

Sunny Vagnozzi, 1, * Fabio Pacucci, 2, 3, † and Abraham Loeb 2, 3, ‡

¹ Kavli Institute for Cosmology (KICC) and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom ² Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA ³ Black Hole Initiative, Harvard University, Cambridge, MA 02138, USA

$$t_U(z) = \int_z^\infty \frac{dz'}{(1+z')H(z')} \propto \frac{1}{H_0}$$

Pros and cons:

- ullet OAO cannot be older than the Universe o **upper limit on H_0**
- $t_U(z)$ integral insensitive to early-time cosmology
- ⇒ late-time consistency test for ΛCDM independent of the early-time expansion!
- Ages of astrophysical objects at z > 0 hard to estimate robustly \triangle

Old astrophysical objects and the Hubble tension

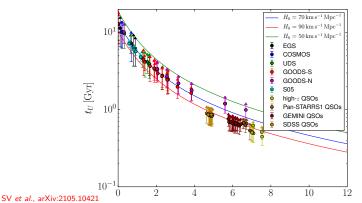
Usefulness in relation to the Hubble tension:

- Reliable high t_U measurement(s) would disfavor models with high H_0 and standard post-recombination physics
- \bullet OAO cannot be older than the Universe \to upper limit on H_0
- Contradiction between OAO upper limit on H_0 and local H_0 measurements could indicate the need for non-standard late-time ($z\lesssim 10$) physics, or non-standard local physics
- Conclusions completely independent of pre-recombination physics

Role of age of the Universe today $t_U(z=0)$ recently appreciated in the Hubble tension context Jiménez et al., JCAP 1903 (2019) 043; Bernal et al., PRD 103 (2021) 103533

The local and distant Universe: stellar ages and H_0 Raul Jimenez^{1,2}, Andrea Cimatti^{3,4}, Licia Verde^{1,2}, Michele Moresco^{3,5} and Benjamin Wandelt^{6,7,8}

Published 28 March 2019 • © 2019 IOP Publishing Ltd and Sissa Medialab Journal of Cosmology and Astroparticle Physics, Volume 2019, March 2019 Citation Raul Jimenez et al JCAP03(2019)043



Trouble beyond H_0 and the new cosmic triangles

José Luis Bernal, Licia Verde, Raul Jimenez, Marc Kamionkowski, David Valcin, and Benjamin D. Wandelt Phys. Rev. D 103, 103533 – Published 26 May 2021

OAO age-redshift diagram

Age-redshift diagram up to $z\sim 8$

Galaxy ages estimated (mostly by CANDELS team) via SED fitting, QSOs ages via growth model Pacucci et al., ApJ Lett. 850 (2017) L42

Results

Assume Λ CDM at late times, constrain H_0 , Ω_m , and incubation time $\tau_{\rm in}$

Prior for $au_{ ext{in}}$ following Jiménez et al., JCAP 1903 (2019) 043; Valcin et al., JCAP 2012 (2020) 022

- $H_0 < 73.2 (95\% \text{ C.L.})$
- $\approx 2\sigma$ tension with Cepheid-calibrated SNela H_0 measurement
- Tighter (but less robust) results using non-flat prior on Ω_m
- (in principle can also constrain w, Ω_K ,...)

SV et al., arXiv:2105.10421

Implications for the Hubble tension

CAVEAT – if the OAO ages are reliable, possible explanations for the previous results include:

- #1: Λ CDM is not the end of the story at $z \lesssim 10$
- #2: Nothing wrong with Λ CDM at $z \lesssim 10$, need local new physics...

```
Examples: screened 5th forces (Desmond et al., PRD 100 (2019) 043537; Desmond & Sakstein, PRD 102 (2020) 023007), breakdown of FLRW (Krishnan et al., arXiv:2105.09790; arXiv:2106.02532),++
```

- #3: A combination of the above
- #4: Just a boring 2σ fluke or systematics?

If #1, maybe the answer to the Hubble tension is a combination of (mostly) pre-plus-post-recombination new physics? If #2, maybe the Hubble tension is not cosmological, but non-local vs local discrepancy? See hints for this in Lin, Chen & Mack, arXiv:2102.05701

Several other hints that pre-recombination new physics alone not enough to solve Hubble tension Krishnan et al., PRD 102 (2020) 103525; Jedamzik et al., Commun. Phys. 4 (2021)

Conclusions

- Hubble tension ocean/model space is too vast: need more general (consistency) tests to identify promising directions
- Early times: no signs of new physics in early ISW effect \to $A_{\rm eISW} \approx 1$ sets important challenge for early-time new physics (EDE case study)
- Late times: slight discrepancy between ages of oldest astrophysical objects (upper limit on H_0) and local H_0 measurements

Question for everybody:

Do you think early-time new physics alone can solve the Hubble tension?

Please let me know through this poll: linkto.run/p/Y7MXGGBI