Flavor-specific Neutrino Self-interaction in Cosmology

Subhajit Ghosh In collaboration with: Anirban Das (SLAC)

[Based on arXiv:2011.12315]

University of Notre Dame

Cosmology from Home 2021 | 5-16 July, 2021

Introduction

Self interaction, interaction with Dark sector etc.

- Anomalous signal in short- baseline experiments
- Supernova Neutrinos
- Cosmological signatures

Cosmological signatures of Neutrino self interaction

Cosmological signatures of Neutrino self interaction

Lancaster et. al. (1704.06657)

Proposed as a solution (?) of Hubble tension

(Doesn't work when CMB polarisation data is included)

Laboratory constraint

Universal coupling is strongly ruled out by laboratory constraints

$$\dot{\tau}_{\nu} = -a(G_{\rm eff})^2 T_{\nu}^5$$

Laboratory constraint

Need for cosmological analysis of Flavor specific neutrino self interaction

Flavor specific neutrino self interaction in cosmology

CMB is insensitive to specific flavor $(\nu_e, \nu_\mu, \nu_\tau)$ of Neutrino (Not sensitive to weak interaction)

<u>CMB is sensitive to flavor specific interaction 'collectively'</u>

Common coupling strength G_{eff} for coupled flavors (CMB insensitive to specific flavor)

Massless neutrinos 3 flavor ($N_{eff} = 3.046$) Flavor diagonal interaction

c =coupled (interacting) f =free-streaming (non-interacting) $\bullet \equiv 0$

Effect on CMB spectrum

Changes are milder with less number of coupled neutrinos

Strong flavor specific interaction preferred by CMB

Significance of the SI mode increases dramatically in flavor specific scenario

Strong flavor specific interaction preferred by CMB

Anirban Das, SG : 2011.12315

Origin of the SI mode

¹¹

SI mode enhancement in flavor specific scenario

*MI mode residual is virtually equivalent to ΛCDM *Planck 2018 data with error bar are shown 12

Effect on H_0 : Phase shift

Neutrino self interaction can enhance H_0 even when $N_{\rm eff}$ is kept fixed

Photon transfer function $-\cos(kr_s^* + \phi_{\nu})$

 $\ell \approx k D_A^* = (m\pi - \phi_\nu) \frac{D_A^*}{r_s^*}$

Phase shift due to free-streaming neutrinos

$$\phi_{\nu} \simeq 0.19 \pi R_{\nu}$$

$$R_{\nu} = \frac{\rho_{\nu}}{\rho_{\gamma} + \rho_{\nu}}$$

Effect on H_0 : Phase shift

*Even when N_{eff} is varied in 1c + 2f scenario H_0 does not increase substantially

Effect of BAO data

Constraints with other dataset

Conclusion

- Flavor specific neutrino self interaction is phenomenologically motivated
 - \rightarrow takes into account laboratory constraints
- The significance of the SI mode is increased dramatically \rightarrow similar in χ^2 to Λ CDM fit
- The position of the SI mode peak in Flavor specific interaction remains almost the same in Flavor universal case
- However, does not predict a larger H_0 than flavor universal case

Flavor specific neutrino self interaction can provide similar (in some case better) fit to the CMB (& LSS) data

Cosmology favors Flavor specific neutrino self interaction

Extra

Parameter Values

Parameters	TT+lowE		TTTEEE+lowE	
	SI	${ m MI}$	SI	${ m MI}$
$\Omega_{ m b}h^2$	0.022 ± 0.0003	0.022 ± 0.00022	0.022 ± 0.00016	0.022 ± 0.00015
$\Omega_{ m c} h^2$	0.1212 ± 0.0025	0.1203 ± 0.0021	0.1205 ± 0.0015	0.1201 ± 0.0014
$100\theta_s$	$1.0469 {\pm} 0.00068$	$1.0419 {\pm} 0.00048$	$1.0464 {\pm} 0.00087$	1.0419 ± 0.0003
$\ln(10^{10}A_s)$	2.968 ± 0.0186	3.036 ± 0.017	2.984 ± 0.017	3.042 ± 0.0161
n_s	0.9317 ± 0.0085	0.9593 ± 0.0071	0.9386 ± 0.004	0.9626 ± 0.005
$ au_{ m reio}$	0.0501 ± 0.0082	0.0516 ± 0.0079	0.0543 ± 0.0077	0.0537 ± 0.0077
$\log_{10}(G_{\rm eff}/{\rm MeV^{-2}})$	-1.72 ± 0.17	-4.17 ± 0.51	-1.92 ± 0.18	-4.35 ± 0.42
$H_0({\rm kms^{-1}Mpc^{-1}})$	68.97 ± 1.05	67.52 ± 0.93	69.44 ± 0.64	67.82 ± 0.61
$r_s^*(\mathrm{Mpc})$	144.70 ± 0.53	144.97 ± 0.49	144.54 ± 0.35	144.84 ± 0.32
σ_8	0.826 ± 0.01	0.824 ± 0.009	0.834 ± 0.008	0.824 ± 0.0075
$\chi^2 - \chi^2_{\Lambda { m CDM}}$	2.33	-0.01	5.14	0.18

Table 4: Parameter values and 68% confidence limits in 3c + 0f.

Parameter Values

Parameters	TT+lowE		TTTEEE+lowE	
	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.022 ± 0.00027	0.022 ± 0.00021	0.022 ± 0.00016	0.022 ± 0.00015
$\Omega_{ m c} h^2$	0.1211 ± 0.0023	0.1203 ± 0.002	0.1205 ± 0.0014	0.1201 ± 0.0013
$100\theta_s$	$1.0452 {\pm} 0.00059$	1.0419 ± 0.0005	1.045 ± 0.00076	$1.0419 {\pm} 0.00031$
$\ln(10^{10}A_s)$	2.99 ± 0.0179	3.036 ± 0.01714	3 ± 0.0167	3.042 ± 0.0161
n_s	0.9407 ± 0.0079	0.9596 ± 0.0068	0.9473 ± 0.0046	0.9628 ± 0.005
$ au_{ m reio}$	0.0501 ± 0.008	0.0516 ± 0.0079	0.0538 ± 0.0077	0.0538 ± 0.0077
$\log_{10}(G_{\rm eff}/{\rm MeV^{-2}})$	-1.69 ± 0.2	-4.03 ± 0.6	-1.93 ± 0.24	-4.24 ± 0.5
$H_0({\rm kms^{-1}Mpc^{-1}})$	68.34 ± 1.00	67.57 ± 0.92	68.81 ± 0.63	67.83 ± 0.6
$r_s^*({ m Mpc})$	144.75 ± 0.51	144.98 ± 0.49	144.64 ± 0.34	144.85 ± 0.32
σ_8	0.823 ± 0.01	0.824 ± 0.009	0.829 ± 0.0079	0.824 ± 0.0075
$\chi^2 - \chi^2_{\Lambda { m CDM}}$	-0.17	-0.05	1.8	0.28

Table 5: Parameter values and 68% confidence limits in 2c + 1f.

Parameter Values

Parameters	TT+lowE		TTTEEE+lowE	
	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.022 ± 0.00023	0.022 ± 0.00021	0.022 ± 0.00015	0.022 ± 0.00015
$\Omega_{ m c} h^2$	0.1207 ± 0.0021	0.1203 ± 0.002	0.1203 ± 0.0014	0.1201 ± 0.0013
$100\theta_s$	$1.0434 {\pm} 0.00062$	1.0419 ± 0.0004	1.043 ± 0.00058	1.0419 ± 0.0003
$\ln(10^{10}A_s)$	3.01 ± 0.0179	3.037 ± 0.01664	3.024 ± 0.0166	3.042 ± 0.016
n_s	0.9513 ± 0.0069	0.9609 ± 0.0059	0.9553 ± 0.0049	0.963 ± 0.005
$ au_{ m reio}$	0.051 ± 0.008	0.0519 ± 0.008	0.0539 ± 0.0076	0.0539 ± 0.0077
$\log_{10}(G_{\rm eff}/{\rm MeV^{-2}})$	-1.75 ± 0.4	-3.94 ± 0.6	-1.9 ± 0.37	-4.06 ± 0.6
$H_0({\rm kms^{-1}Mpc^{-1}})$	67.9 ± 1.00	67.56 ± 0.93	68.3 ± 0.62	67.83 ± 0.61
$r_s^*(\mathrm{Mpc})$	144.88 ± 0.5	144.96 ± 0.5	144.76 ± 0.32	144.84 ± 0.31
σ_8	0.821 ± 0.01	0.823 ± 0.009	0.825 ± 0.0083	0.824 ± 0.0075
$\chi^2 - \chi^2_{\Lambda { m CDM}}$	-0.91	-0.03	0	0.1

Table 6: Parameter values and 68% confidence limits in 1c + 2f.

H_0 values

Table 7: Parameter values and 68% confidence limits for SI mode in 3c + 0f and 2c + 1f, and ΛCDM in TTTEEE+lowE+lensing data.

	SI: $3c + 0f$	SI: $2c + 1f$	ΛCDM
$H_0({\rm kms^{-1}Mpc^{-1}})$	69.47 ± 0.59	68.87 ± 0.58	67.90 ± 0.54
Ω_Λ	0.7035 ± 0.0071	0.6989 ± 0.0072	0.6912 ± 0.0073
$100\theta_s$	1.0463 ± 0.00094	1.0447 ± 0.00079	1.04186 ± 0.00029
$r_s^*(\mathrm{Mpc})$	144.58 ± 0.32	144.69 ± 0.31	144.87 ± 0.29
$D^*_A(\mathrm{Mpc})$	12.69 ± 0.036	12.72 ± 0.034	12.773 ± 0.028

Table 13: values of H_0 (1 σ errorbar) and upper limit of N_{eff} (95% C.L) for $\mathbf{1c} + \mathbf{2f} + \Delta N_{\text{eff}}$ for all dataset.

Parameters	TT+lowE	TTTEEE+lowE+lensing	TTTEEE+lowE+lensing+BAO+H0
H_0	$69.7^{+1.3}_{-2.1}$	$68.77\substack{+0.66\\-0.95}$	$70.04\substack{+0.84 \\ -0.84}$
$N_{ m eff}$	< 3.76	< 3.38	< 3.58