

Shedding light on Dark Matter and Dark Energy

Simon Birrer

Cosmology from home 2021

Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies

Flux-ratios are sensitive to completely dark structure

Mao & Schneider 1998, Dalal & Kochanek 2002, Moustakas & Metcalf 2003, Nierenberg+2014, 2017 Hsueh+2016, 2017, 2019, Gilman, **SB**+2018, 2019a,b,c

HST data

smooth

clump

preferred

preferred

- 20

- 10

0 AR

-10

-20

-30

F814W+F555W

Forward modeling and simulation based inferences with Approximate Bayesian Computing

thermal relic mass > **5.2 keV** from a sample of 8 quasar lenses, > **2 keV** from1 lensing arc

SB+2015, **SB+**2017a, b, Gilman, **SB**+2019, 2020a, b

Combining visible and invisible universe self-consistent combined small-scale probe analysis

- Recent analyses of the Lyman-α forest, strong gravitational lenses, and Milky Way satellites achieve similar dark matter sensitivity
- Each individual measurement probes a **distinct aspect** of dark matter clustering
- Joint analyses of small-scale probes are key to break degeneracies and robustly detect non-CDM physics

thermal relic mass > 9.7 keV at 95% confidence

Nadler, **SB**, Gilman+2021, arXiv:2101.07810

Measuring the Hubble constant with time-delay cosmography

H_0 measurements in flat Λ CDM - performed blindly

Talks on TDCOSMO results

Cosmology talk (16.07.2020) (40 mins)

https://www.youtube.com/ watch?v=QrdqbZv_tBs

Cosmology from home 2020 (20 mins)

https://www.youtube.com/ watch?v=2OeI5M7qS68

Constraining galaxy density profiles with lensing and kinematics

Shajib, Treu, **SB**+2020 2008.11724

Time Delay Cosmography (TDCOSMO) – H₀ determination

H0 - the near future

E-ELT, TMT, GMT

10'000+ strong lenses 200+ quasar lenses

What data and what analysis is required to answer fundamental questions about the universe?

Euclid

Vera Rubin Observatory

Nancy Grace Roman telescope

James Webb Space Telescope

Spatially resolved stellar kinematics

SB & Treu 2021 TDCOSMO V

Lensed supernovae

SN "Refsdal"

iPTF16geu

Kelly+2015

- characteristic light curve
- SNe fades away (no quasar contamination in kinematics)
- Standardizable magnification

Goobar+2017

The Hubble constant from lensed supernovae with standardizable magnifications

Hierarchical Inference of Strong Lenses with Bayesian Neural Networks

https://github.com/swagnercarena/ovejero https://github.com/jiwoncpark/h0rton

What does (strong) lensing measure?

Gravitational lensing formalism in a curved arc basis

weak and strong lensing unified

Azimuthal constraints

Radial constraints

Birrer 2021, arXiv:2104.09522

Software

Full software, scripts and data released for Birrer+19, 20, 21, ...

Astropy affiliated!

The development is coordinated on GitHub and contributions are welcome. The documentation of lenstronomy is available at readthedocs.org and the package is distributed over PyPI.

Installation

SB+2015, SB & Amara 2018, SB+2021

17 https://github.com/sibirrer/lenstronomy