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Figure 4. Left: Intensity contours of the reconstructed source surface profiles rescaled to fiducial
value � = 0.2” for the di↵erent shapelet scales � in filter F814W of Figure 3. The contour lines overlay
well. The lens model does adopt to the choice of � such that the source reconstruction catches the
best scales. Middle: Same as left for the filter F555W. The same behavior can be seen as for F814W.
Right: Color composite model of the filters F814W and F555W for a chosen joint lens model.

5.3 Relaxing on the lens model assumption

As pointed out by [1], there can also be an internal component to the MST. Namely when the
lens model can not reproduce the underlining internal mass distribution. The assumption of
a power-law lens model formally sets the internal part of the MST. The parameters will fit
preferentially those models, whose shape, modulo an artificial MST, are the most similar to
the underlying mass distribution. The only e↵ect visible in the modeling of the imaging data
is on the source scale. The inferred source scale will be di↵erent from the one of the true
lens model. Any assumed mass distribution which can not be rescaled according to Equation
(5.1) can thus potentially lead to biased inferences, in particular on the slope of the mass
profile. This also can result in significant biases in the inferred lensing potential and lens
kinematics. In particular, it was stated by [1] that the assumption of a power-law lens model
can potentially lead to a significant bias in the inference of the time delay distance.

Three approaches to handle the concerns of [1] in performing cosmographic estimates
are:

1. One assumes that the true lens model can be described within the functional form of
the chosen parameterization. This is the approach done by [22]. In this case we end
up with the potentially biased inference discussed in [1], a situation we want to avoid
as good as possible.

2. One choses a more flexible lens model than a single power-law mass profile. This
approach was followed in [23] in response to [1]. Di↵erent profile parameterizations may
lead to di↵erent preferred source scales. It is not guaranteed that a more sophisticated
lens model parameterization infers an unbiased result in the cosmographic inference.

3. Perform simplifications and approximations that lead to greater robustness against
known degeneracies. For instance accommodating MST through careful handling of
the source size inference.

In this work we chose the third option mentioned above. This option requires the least
assumptions on the lens model and a prior is placed on the source size, rather through

– 10 –Figure 3. The scanning results for �Ri of the HST data (left column) and two selected CDM
semi-analytic realizations with halo masses 1013.5M� and 1013M� (middle two columns) and the
sensitivity map (right column). The di↵erent rows indicate the analysis of filter F814W (top), F555W
(middle) and combined F814W+F555W (bottom). Each pixel in the plot reflects �Di when placing
the perturber at the position of the pixel.

C(dr) = h�Ri(r)�Ri(r + dr)ir, both based on the relative excess distance �Ri (4.7) of the
scanning procedure.

The specific metric we adopt is the product of the two metrics involving the cumulative
distribution DN and the correlation function DC
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are the quadratic distances between the two distributions in respect of P (x) and C(dr).
The sum in DN is uniform spaced in the range �Ri in [10, 300] in incremental increases of
�Ri = 10. The sum in DC is uniformly spaced in the range 0”�2.5” in incremental increases
of �r = 0.05”.

The expression 4.8 provides, without normalization, an equal weight on both diagnostics.
We emphasis that the expression in equation 4.8 is in no means a likelihood.

The cumulative distribution is an indicator that quantifies the strength of the substruc-
ture signal and the correlation function to quantify the spatial signature. Figure 4 shows
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Narrow-line lensing with the WFC3 Grism 5
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Figure 1. Drizzled direct F140W (F105W for SDSS J1330 and WGD J2038) images of the lenses, along with quasar image subtracted
residuals. Quasar images are modelled as point sources using the EPSF in the native FLT frame (see Section 4.1). All images are rotated
relative to the observing frame such that North is up and East left. Bars indicate one arcsecond. With the exception of SDSS J1330,
which shows clear evidence for a disk, the deflecting galaxies are smooth, massive ellipticals. The majority of lenses have extended arcs
from the strongly lensed quasar host galaxy.

4.1 Direct Image Fitting

For each direct F140W or F105W image, we generate a
separate model for each direct image component that will
contribute a spectrum to the grism image. These direct im-
age models include four point sources, one for each quasar,

modelled using the effective PSF from Anderson (2016); a
Sérsic profile (Sersic 1968) for the main deflector and any
other nearby galaxies; and an empirical model for the lensed
quasar host galaxy if visible. The empirical model for the
lensed quasar host light is generated by iteratively subtract-

c� 2016 RAS, MNRAS 000, 1–16

strong lensing constraints on dark matter warmth 13

Figure 5. Dark matter halo e↵ective multi-plane convergence maps for some of the highest-ranked realizations for the subset of quads
B1422, WGD J0405, WFI 2033, and RX J0911, each of which has flux ratios inconsistent with smooth lens models. The defintion of the
e↵ective multi-plane convergence takes into account the non-linear e↵ects present in multi-plane lensing, and is defined with respect to
the mean dark matter density in the universe such that some regions are underdense (blue), while other regions (specifically, dark matter
halos) are over-dense (red). The subhalo mass function normalization, line of sight normalization, halo mass and half-mode mass are
displayed for each realization. Green text/circles denote observed image positions and fluxes, while black text/crosses denote the model
positions and fluxes. The forward-model data sets fit the image positions and fluxes to within the measurement uncertainties.

c� 0000 RAS, MNRAS 000, 1–??
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• Recent analyses of the Lyman-α 
forest, strong gravitational lenses, 
and Milky Way satellites achieve 
similar dark matter sensitivity

Preliminary

• Each individual measurement 
probes a distinct aspect of dark 
matter clustering

Nadler, SB, Gilman+2021, arXiv:2101.07810

Combining visible and invisible universe
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self-consistent combined small-scale probe analysis
12 NADLER ET AL.
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Figure 4. Joint marginal likelihood of WDM half-mode mass ver-
sus projected subhalo number density at the strong lensing scales
from our combined MW satellite–strong lensing posterior, trans-
formed according to the procedure in Section 5.2, with q = 1. The
colormap shows the probability density normalized to its maximum
value in this parameter space. Solid (dashed) white lines indicate
1� (2�) contours for a 2-dimensional Gaussian distribution.

6.2. Fiducial WDM Constraints
We now present the results of our joint analysis for our

fiducial subhalo disruption efficiency model of q = 1, which
assumes equally efficient subhalo disruption due to baryons
in the MW and in strong lens host halos, which is broadly
compatible with the results of hydrodynamic simulations (see
Section 2.3). The combined ⌃sub–Mhm marginal likelihood
is shown in Figure 4 and the corresponding 1-dimensional
marginalized likelihoods for ⌃sub and Mhm are shown in Fig-
ure 5. The joint marginal likelihood retains the shape of
the ⌃sub–Mhm distribution from the transformed MW satellite
posterior and from the lensing analysis limited to the range of
⌃sub inferred from our MW satellite analysis according to the
procedure in Section 5.2. Moreover, the joint marginal like-
lihood visibly prefers lower values of Mhm than either poste-
rior alone, demonstrating the unique constraining power ac-
cessible when combining independent small-scale structure
probes in a multidimensional parameter space.

Consistent with these qualitative aspects of the joint ⌃sub–
Mhm likelihood, the upper limit of the marginal Mhm likeli-
hood shown in the right panel of Figure 5 is noticeably lower
than either of the individual constraints from MW satellites
or strong lensing. Quantitatively, the upper limit on Mhm
from our joint analysis improves upon those set by the MW
satellite and strong lensing analyses individually by ⇠ 60%,
leading to a ⇠ 30% increase in the strength of the lower
limit on mWDM. Specifically, the 95% confidence limit of
Mhm < 107.4 M� (mWDM > 7.4 keV) from our MW satellite
analysis improves to Mhm < 107.0 M� (mWDM > 9.7 keV).

Table 1. 95% confidence and 20:1 likelihood ratio upper limits
on Mhm and corresponding lower limits on mWDM for our multidi-
mensional probe combination for various differential subhalo dis-
ruption efficiency values q, and for an analysis that combines the
fully marginalized 1-dimensional Mhm distributions (1-dim).

1-dim q = 0.5 q = 1 q = 2

95% confidence level Mhm [M�] 107.2 107.1 107.0 106.9

95% confidence level mWDM [keV] 8.4 9.1 9.7 10.4
20:1 likelihood ratio Mhm [M�] 107.7 107.6 107.4 107.3

20:1 likelihood ratio mWDM [keV] 6.0 6.4 7.4 7.9

NOTE—q = 0.5 corresponds to twice as efficient subhalo disruption due to
baryons in the MW relative to strong lenses, q = 1 (our fiducial model)
corresponds to equally efficient subhalo disruption due to baryons, and
q = 2 corresponds to twice as efficient subhalo disruption due to baryons
in strong lenses.

We find a similar level improvement in terms of likelihood
ratios, with Mhm = 107.4 M� (mWDM = 7.4 keV) ruled out
at 20:1 relative to the peak of the marginal likelihood at the
lower limit of the prior at 105 M�.

To derive these limits, we conservatively increased the Mhm
values returned by our joint analysis by a factor of ⇠ 25% to
account for the maximum mass of the MW halo relative to the
average host halo masses of our zoom-in simulations, follow-
ing Nadler et al. (2020b). As demonstrated in the following
subsection, propagating the MW halo mass uncertainty into
the ⌃sub dimension would have a negligible impact on the re-
sults compared to uncertainties in the efficiency of subhalo
disruption due to baryons, so we do not perform this scaling
for simplicity.

Our fiducial constraint of mWDM > 9.7 keV at 95% confi-
dence is one of the most stringent limits on the WDM par-
ticle mass set by small-scale structure observations to date.
Moreover, it is set using only existing strong lensing and
MW satellite measurements, underscoring the importance of
unified, multidimensional small-scale structure analyses as
the corresponding measurements continue to improve. Joint
model-building efforts that further incorporate Lyman-↵ for-
est (Viel et al. 2013; Iršič et al. 2017) and stellar stream
(Banik et al. 2019) constraints while retaining the unique in-
formation provided by each probe will therefore be particu-
larly fruitful.

6.3. Impact of the Differential Subhalo Disruption
Efficiency due to Baryons

We now explore the impact of the differential efficiency of
subhalo disruption due to baryons on our WDM constraints.
Table 1 lists the Mhm and mWDM 95% confidence level and
20:1 likelihood ratio limits for q = 0.5, 1, and 2, and the right
panel of Figure 6 shows the corresponding joint marginal
likelihoods. In Table 1 and Figure 6, we also show the re-
sult of combining the fully marginalized 1-dimensional Mhm
posteriors from our MW satellite and strong lensing analyses.

As demonstrated in the right panel of Figure 6, the joint
marginal likelihoods for Mhm become increasingly constrain-

• Joint analyses of small-scale probes 
are key to break degeneracies and 
robustly detect non-CDM physics thermal relic mass > 9.7 keV 

at 95% confidence
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Measuring the Hubble constant  
with time-delay cosmography 

Credit: M. Millon

Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 3

ring. This configuration allows for a very similar analysis as recently
applied for quadruply lensed quasars (Suyu et al. 2010, 2014; Birrer
et al. 2016; Wong et al. 2017). We expect that many similar examples
with relatively high surface brightness parts of quasar host galaxy
crossing the inner caustic can be found as hundreds of doubles are
discovered, and thus our analysis can serve as a pathfinder for much
larger samples.

We self-consistently incorporate new high resolution HST
imaging data with existing kinematics data of Agnello et al. (2016),
quasar light curves monitoring data of Eulaers et al. (2013) (here-
after, E13), and a LOS analysis in a Bayesian hierarchical model.
We provide the full likelihood of the cosmographic analysis that en-
ables a self-consistent combined analysis with other strong lenses
and other cosmographic probes. We also provide a new determina-
tion of the Hubble constant, independent of the local and inverse
distance ladder method. Finally, since our new blind measurement
is consistent with the previous H0LiCOW collaboration measure-
ments, we combine the likelihood from the four lenses to provide
an updated TDSL measurement of the Hubble constant with ⇠ 3
per cent precision in a flat ⇤CDM cosmology.

The paper is structured as follows: In Section 2, we describe
the basics of time-delay cosmography and outline the steps of our
analysis. Section 3 describes the lens system SDSS 1206+4332 and
the data used in our analysis. We describe the model choices and
di�erent options we assess in our analysis in Section 4. We then go
through the forward modelling of the di�erent data sets in Section 5.
Section 6 describes the LOS analysis. We describe the combined
Bayesian hierarchical analysis in Section 7. We present our results
in Section 8 and summarize our work in Section 9.

Crucially, the analysis presented in this work through Section 2
- 7 was laid out and executed blindly with respect to the cosmo-
graphic result and in particular the value of the Hubble constant.
The blinding is built in the software, by subtracting the average of
every posterior distribution function before revealing it to the in-
vestigator. The scripts and pipelines are then frozen before the cos-
mological inference is unblinded. We displayed the cosmographic
likelihood and the inference of the cosmological parameters only
after all co-authors involved in the time-delay analysis have agreed
that the analysis was satisfactory. The submission of this manuscript
followed shortly after the unblinding with only minor changes in the
text for clarity and updated figures.

The analysis and the lens modelling are performed with the
publicly available software �����������3 (Birrer & Amara 2018;
Birrer et al. 2015) version 0.3.3 and the reduced data products
and the lens modelling scripts are made publicly available after
acceptance of the manuscript.

2 OUTLINE OF THE ANALYSIS

We combine time-delay measurements between the two images of
the quasar, �tAB, Hubble Space Telescope (HST) imaging data,
dHST, stellar kinematics of the deflector galaxy, �P, and wide field
imaging and spectroscopy of the environment of the lens, denv, to
measure angular diameter distances and hence the Hubble constant.
We specifically denote dHST as the data vector of individual pixel
values of the imaging data and denv the collection of objects with
their photometric and spectoscopical measurements.

3 https://lenstronomy.readthedocs.io

This section outlines our analysis. We describe the observ-
ables and how they relate to the underlining cosmological model
(Section 2.1), highlight the cosmographic constraining power of the
combined data sets (Section 2.2), layout the formal notation of the
combined Bayesian analysis of this work (Section 2.3), and highlight
our strategy in regards to lensing degeneracies and other potential
systematics (Section 2.4). The details of the modelling choices are
presented in Sections 4 and 5.

2.1 Observables

The excess time delay (see e.g. Schneider et al. 1992) of an image at
✓ with corresponding source position � relative to an unperturbed
path is

t(✓, �) = (1 + zd)
c

DdDs
Dds

 (✓ � �)2
2

�  (✓)
�
, (1)

where zd is the redshift of the deflector, c the speed of light,  the
lensing potential and Dd, Ds and Dds the angular diameter distances
from the observer to the deflector, from the observer to the source
and from the deflector to the source, respectively.

The relative time delay between two images A and B is

�tAB =
D�t

c
[�(✓A, �) � �(✓B, �)] , (2)

where

�(✓, �) =
 (✓ � �)2

2
�  (✓)

�
(3)

is the Fermat potential and

D�t ⌘ (1 + zd)
DdDs
Dds

(4)

is the so-called time-delay distance.
The lensing potential,  , and the true source position, �, re-

quired for the prediction of the time delay, can be inferred by mod-
elling the appearance of multiply imaged structure in high resolution
imaging data, dHST. Comparison with the data allows us to constrain
the parameters of the lens model, ⇠ lens, and the parameters of the
surface brightness distribution of the deflector and lensed source
model, ⇠ light, and their covariances.

The details of the mass distribution along the LOS can signif-
icantly impact observables and thus need to be taken into account
(see e.g. McCully et al. 2017; Rusu et al. 2017; Sluse et al. 2017;
Birrer et al. 2017a; Tihhonova et al. 2018). Large scale structure
primarily introduces second order distortions in the form of shear
and convergence. Perturbers very close to the LOS of the main
lens can induce higher order perturbations (flexion and beyond) that
need to be modelled explicitly to accurately account for their e�ect
on the observables. In our analysis, we model the nearest massive
galaxies explicitly while the larger scale structure is accounted by a
convergence and an external shear term (see Wong et al. 2017, for
a similar approach).

The LOS convergence e�ectively alters the specific angular
diameter distances relevant to the lensing system, D

0, relative to the
homogeneous background metric, D

bkg. We take into account the
external convergence factor, ext, perturbing the time-delay distance,
D�t , (Suyu et al. 2010):

D
0
�t ⌘ (1 � ext) D

bkg
�t
, (5)

where D
0
�t

indicates the time-delay distance along the specific LOS
corresponding to the explicit lens model and D

bkg
�t

corresponds to the

MNRAS 000, 1–26 (2018)

lensing potential
path differenceabsolute scale

time delay
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S. Birrer et al.: Hierarchical time-delay cosmography

Fig. 18: Comparison of di�erent blind H0 measurements by the TDCOSMO collaboration, based on di�erent mass profile assump-
tions and data sets incorporated. All measurements presented on this plot were performed blindly with regard to the inference of
H0. The measurement on top is the combined H0LiCOW 6 lenses constraints presented by Wong et al. (2020), when averaging
power-law and composite NFW plus stars (with constant mass-to-light ratio) on a lens-by-lens basis without correlated errors among
the lenses. The next two measurements are from Millon et al. (2020) of 6 TDCOSMO time-delay lenses (5 H0LiCOW lenses21and 1
STRIDES lens by Shajib et al. (2020a)), when performing the inference assuming either a composite NFW plus stars (with constant
mass-to-light ratio) or the power-law mass density profile for the galaxy acting as a lens. In the lower panel, we show the results from
this work. The main di�erence with respect to previous work is that we have made virtually no assumption on the radial mass density
profile of the lens galaxy, and taken into account the covariance between the lenses. The analysis in this work is constrained only by
the stellar kinematics and fully accounts for the uncertainty related to the mass sheet transformation (MST). In this framework, we
obtain four measurements according to the datasets considered. The TDCOSMO-only inference is based on the same set of 7 lenses
as those jointly included by Millon et al. (2020) and Wong et al. (2020). The inferred median value is the same, indicating no bias,
and the uncertainties, as expected, are larger. The next three measurements rely on external datasets from the SLACS survey, by
making the assumption that the lens galaxies in the two surveys are drawn from the same population. The TDCOSMO+SLACSIFU
measurements uses, in addition to the TDCOSMO sample, 9 lenses from the SLACS sample with IFU observations to inform the
anisotropy prior applied on the TDCOSMO lenses. The TDCOSMO+SLACSSDSS measurement comes from the joint analysis of the
TDCOSMO sample and 33 SLACS lenses with SDSS spectroscopy. The TDCOSMO+SLACSSDSS+IFU presents the joint analysis
of all three data sets, again assuming self-similar distributions of the mass profiles and stellar anisotropy. The TDCOSMO-only
and TDCOSMO+SLACSIFU analyses do not rely on self-similar mass profiles of the SLACS and TDCOSMO sample while the
TDCOSMO+SLACSSDSS and TDCOSMO+SLACSSDSS+IFU measurements (orange and purple) do. All the measurements shown
in this plot are in statistical agreement with each other. See Section 8.5 for a discussion and physical interpretation of the results.
� source

Article number, page 31 of 41

SB+2020 TDCOSMO IV
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https://www.youtube.com/
watch?v=QrdqbZv_tBs

https://www.youtube.com/
watch?v=2OeI5M7qS68

Cosmology talk (16.07.2020)

(40 mins)

Cosmology from home 2020 
(20 mins)

SB+2020 TDCOSMO IV

Talks on TDCOSMO results

https://www.youtube.com/watch?v=QrdqbZv_tBs
https://www.youtube.com/watch?v=2OeI5M7qS68
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A&A proofs� manuscript no. mst_h0

Fig. 17: Illustration of the inferred mass profile of the joint TDCOSMO+SLACSSDSS+IFU analysis. A pure power-law with �pl =
2.10± 0.05 is shown in orange. In blue is the result of this work of �int = 0.91± 0.045 when interpreted as a cored mass component
with Rc uniform in [300, 1000]. Three dimensional density are illustrated on the left and the lensing convergence on the right. The
dashed vertical line on the right panels indicates the Einstein radius. Relative di�erence in respect to the power-law model are
presented in the bottom panels. � source

sometimes through repeated measurements. The nominal uncer-
tainties are thus accurate, resulting in the internal consistency of
all the TDCOSMO systems with a scatter on �int consistent with
zero19.

The SLACS-only analysis with the reported uncertainties of
the stellar velocity dispersions leads to an inferred scatter in
�int of about 10%. Assuming the same scatter in �int among the
TDCOSMO and SLACS lenses, the discrepancy in the inferred
�(�int) between the two samples indicates that the reported uncer-
tainties of the stellar velocity dispersions of the SLACS lenses do
not reflect the total uncertainty. For the present analysis, we have
addressed this issue by adding additional terms of uncorrelated
errors. However, future work should aim to improve the determi-
nation of systematics going back to the original data (or acquiring
better data), and contemplate the possibility of correlated cali-
bration errors, as due for example to the choice of stellar library
or instrumental setup. Second, our analysis is based on spherical
Jeans models, assuming anisotropy of the Osipkov–Merritt form.
These approximations are su�cient given the current uncertain-
ties and constraints, but future work should consider at least
axis-symmetric Jeans modeling (e.g., Cappellari 2008; Barnabè
et al. 2012; Posacki et al. 2015; Yıldırım et al. 2020), and consider
alternate parameterizations of anisotropy. Another possibility is
the use of axisymmetric modeling of the phase-space distribution
function with a two-integral Schwarzschild method by Cretton
et al. (1999); Verolme & de Zeeuw (2002) as performed by Barn-
abè & Koopmans (2007); Barnabè et al. (2009).

The addition of more freedom to the kinematic models will
require the addition of more empirical information that can be
obtained by spatially resolved data on distant lens galaxies, or
from high-quality data (including absorption line shapes) of ap-
propriately selected local elliptical galaxies.

8.3.2. Selection e↵ects of di↵erent lens samples

One key pillar in this analysis to improve the precision on the
H0 measurement from the TDCOSMO sample is the information

19 This statement has been tested with a flat prior on �(�int).

on the mass profiles of the SLACS sample. The SLACS sample
di�ers in terms of the redshift distribution and re�/✓E relative
to the TDCOSMO sample. Beyond our chosen explicit param-
eterized dependence of the MST parameter �int as a function
of re�/✓E we do not find trends in the predicted vs measured
velocity dispersion within the SLACS sample. However, we do
find di�erences in the external shear contributions between the
SLACS and TDCOSMO sample (Shajib et al. prep). This is ex-
pected because of selection e�ects. The TDCOSMO sample is
composed of quads at higher redshift than SLACS. So it is not
surprising that the TDCOSMO lenses tend to be more elongated
(to increase the size of the quad cross section) and be more im-
pacted by mass structure along the line of sight than SLACS.
Nonetheless, based on previous studies, we have no reason to
suspect that the deflectors themselves are intrinsically di�erent
between SLACS and TDCOSMO. Complex angular structure of
the lenses might also a�ect the inference in the power-law slope
�pl, as the angular degree of freedoms in our model assumptions
are, to some degree, limited (Kochanek 2020b). A study with
more lenses and particularly sampling the redshift range of the
TDCOSMO sample (see Fig. 16) would allow us to better test
our current underlying assumption and in case of a significant
redshift evolution to correct for it.

8.3.3. Line-of-sight structure

The investigation of the line-of-sight structure of strong gravita-
tional lenses of the TDCOSMO and the SLACS sample follows
a specific protocol to provide an individual PDF of the external
convergence, p(ext). In our current analysis, the statistical uncer-
tainty of the SLACS line-of-sight structure is sub-dominant.

In the future – as the other terms of the error budget shrink
and this one becomes more relevant – the following steps will
be necessary. First, the specific choice of N-body simulation and
semi-analytic galaxy evolution model will need to be re-visited.
Second, it will be necessary to investigate how to improve the
comparison with simulation products in order to further miti-
gate uncertainties. For instance, beyond galaxy number count
statistics, weak gravitational lensing observations can also add

Article number, page 28 of 41
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simulations of Gnedin et al. (2004, ⌫ = 0.8) and Abadi et al. (2010, ⌫ ⇠ 0.4) are ruled out. Middle panel: distributions of the mean fraction of star-forming
baryons µ fgal that has cooled from the initial distribution. We show along the top axis the corresponding star-forming e�ciency ✏SF ⌘ fgal⌦m/⌦b, where
⌦b/⌦m is adopted from Planck Collaboration (2018). The µ fgal distributions peaks at ✏SF ⇠ 0.17, which is consistent with moderate to strong feedback
mechanisms on the star formation (Hopkins et al. 2014). Right-hand panel: The distribution of mean M/L-gradient-exponent in our M/L gradient model.
The distribution favors very small gradient, with the 95 per cent upper limit at 0.02.

Table 2. 1D marginalized distributions of the population level parameters from Bayesian hierarchical inference. The corner plot for these parameters are
illustrated in Figure 6. The baseline model settings are: M–c relation prior from (Diemer & Joyce 2019). Je�rey’s prior for M/L-gradient exponent ⌘, and
H0 = 70 km s�1 Mpc�1. “Other settings” column indicates which setting from these baseline settings is varied. The columns for �⌫ , �aani , �fgal , exp(µlog ⌘ ),
and �log ⌘ provide the 95 per cent upper limit.

Stellar M/L Other settings µ⌫ �⌫ µaani �aani µ fgal �fgal exp(µlog ⌘ ) �log ⌘

Constant M/L Baseline �0.06+0.04
�0.04 0.092 1.54+0.25

�0.22 0.26 0.028+0.003
�0.003 0.0040 – –

M/L gradient Baseline �0.03+0.04
�0.05 0.074 1.60+0.27

�0.25 0.22 0.026+0.003
�0.003 0.0041 0.017 0.33

M/L gradient No M–c prior �0.08+0.07
�0.06 0.069 1.60+0.28

�0.25 0.20 0.026+0.003
�0.003 0.0036 0.017 0.36

M/L gradient ⌘ prior ⇠ U(0, 1) 0.02+0.04
�0.04 0.054 1.52+0.26

�0.23 0.25 0.025+0.003
�0.003 0.0036 (0.061)a (0.015)a

a For the model with uniform prior on ⌘, the column exp(µlog ⌘ ) gives the value for µ⌘ and the column �log ⌘ gives the value for �⌘ .

at scales larger than the NFW scale radius is necessary to robustly
constrain the halo mass. We find that the degree of contraction
depends on the halo mass prior in our analysis with a heavier prior
on M200 producing shallower inner slopes to fit the joint lensing–
kinematics data. The sample of Oldham & Auger (2018) has a
similar stellar mass range as our sample and the di�erence between
the mean redshifts of the samples �hzi = 0.15 does not leave
enough room to expand the halos from � ⇠ 2 to � ⇠ 1 within ⇠1.44
Gyr. Therefore, we conclude that the di�erences between our result
and that from Oldham & Auger (2018) are largely caused by the
di�erence in the adopted priors corresponding to the dark matter
halo.

5.1.2 Slope of the total density profile

Our lensing-only models provide h�lensingi = 2.08 ± 0.04 with a
scatter of 0.13±0.02. From the joint lensing–dynamics analysis, we
find the total density profile is shallower by approximately 5 per
cent, which brings the sample mean of the logarithmic slope at
the Einstein radius closer to the isothermal case (Figure 11). This
near-isothermality of the total density profile agrees well with a
multitude of pervious observations – e.g., based on strong-lensing
only or jointly based on lensing and dynamics: Treu & Koopmans

(2004); Gavazzi et al. (2007); Auger et al. (2010b); Ritondale et al.
(2019), and based on stellar dynamics: Thomas et al. (2007); Tortora
et al. (2014); Bellstedt et al. (2018).

In Figure 12, we compare the distribution of the estimated
logarithmic slopes � constrained from the imaging data only in
this study with those estimated by the SLACS analysis from com-
bining stellar kinematics with the imaging data. We find no cor-
relation between the estimated � distributions from the two anal-
yses with biweight midcorrelation r = 0.03 ± 0.17. However, the
SLACS distribution has a mean of h�LDi = 2.078 ± 0.027 and
intrinsic scatter 0.16 ± 0.02 (Auger et al. 2010b). These values
are consistent with our results within 1� confidence level. For the
21 systems that have measured � in Auger et al. (2009), we find
�2
� ⌘ Õ

N=21
i

(�lensing
i,this study � �

LD
i,Auger+(10b))

2/�2
i,total = 21.76. The p-

value assuming a �2-distribution for�2
� with 21 degrees of freedom

is 0.41. We can see in Figure 9 that the two-component mass profile
from lensing–dynamics can deviate from the lensing-only inference
of the power-law profile toward either direction. However, the sam-
ple mean of the such deviations is smaller than ⇠5 per cent near the
Einstein radius, which explains the good agreement for h�i between
this study and Auger et al. (2010b). Thus, a correlation between the
lensing-only local slope and the lensing–dynamics global slope is

MNRAS 000, 1–23 (2020)
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Time	Delay	Cosmography	(TDCOSMO)	– H0 determination
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universe?
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Simon Birrer and Tommaso Treu: Strategies to measure H0 from time delays

Fig. 3. Forecast precision on H0, the MST parameter � and the
anisotropy parameter aani for di↵erent spectroscopic scenarios of a fu-
ture sample of 40 TDCOSMO lenses (future scenario) as specified in
Table 1 in the row of TDCOSMO-5%. � source

Fig. 4. Forecast precision on H0, the MST parameter � and the
anisotropy parameter aani for di↵erent spectroscopic scenarios of a fu-
ture sample of 40 TDCOSMO lenses (future scenario) observed with
aperture spectroscopy of 5% precision and additional external data sets
specified in Table 1 in the row of TDCOSMO-5%. � source

resolved kinematics and the inclusion of datasets of non-time-
delay lenses in a hierarchical framework.

These two strategies are not mutually exclusive and both
should be pursued. The TDCOSMO-only approach has the
advantage of not relying on the assumption of the time de-

lay and non-time-delay galaxies being drawn from the same
parent population. With this additional assumption, the TD-
COSMO+external approach allows for further improvement in
precision. The precision of each approach is su�cient to test
the mutual consistency among di↵erent samples while simul-
taneously fitting for H0. If verified, potentially with the exten-
sion of the hierarchical framework, the consistency will enable
the cosmological exploitation of larger samples of non-time de-
lay lenses that are expected to be discovered by future surveys
(Oguri & Marshall 2010).

Following our proposed strategies, time-delay cosmography
will be able to resolve in the near future the tension between
early and late universe probes at 3 � 5�, without relying on as-
sumptions on the radial mass profile of lens galaxies to break the
mass sheet degeneracy.
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Lensed supernovae

• characteristic light curve 
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• Standardizable magnification
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SB, Dhawan, Shajib in prep

The Hubble constant from lensed supernovae 
with standardizable magnifications

Micro-lensing?
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6 S. Birrer

Figure 2. Illustration of tangential arcs as a function of tangential to radial eigenvector stretch ratio �tan/�rad and tangential
curvature stan. The description of curved arcs in the eigenvector components allow us to describe distortions of lensed object
from the weak lensing regime continuously to the highly-magnified and distorted strong lensing regime. �

with ✓c is the centroid position of the curvature radius378

✓c = ✓0 � s
�1
tanerad. (28)379

Equivalently, the deflector model above can be ex-380

pressed as a singular isothermal sphere model (SIS) in381

combination with an MST as382

↵(✓) = �MST [↵SIS(✓)�↵SIS(✓0)]+(1� �MST) (✓ � ✓0) ,
(29)383

with �MST = �
�1
rad and384

↵SIS(✓) = ✓E
✓ � ✓c
|✓ � ✓c|

, (30)385

with Einstein radius386

✓E = s
�1
tan

✓
1� �rad

�tan

◆
. (31)387

The centroid matches the curvature radius, the Ein-388

stein radius is adjusted such as to matches the ratio389

of tangential-to-radial stretch ratio, �tan/�rad, and the390

MST term matches the inverse of the radial stretch �rad.391

We emphasize that this expression is only valid locally,392

such as around an image of an arc, and is not meant393

to cover an entire deflection field with multiple images.394

We refer to Section 5 where we use a local tangential arc395

parameterization basis separately on multiple images to396

constrain more complex global deflector models.397

3. OBSERVATIONAL INVARIANCES398

Having introduced the formalism of tangentially399

curved deflectors in describing curved arcs, it is essential400

to understand and characterize lensing invariances and401

assumptions for extracting general lensing constraints.402

We thus dedicate this section to lensing degeneracies and403

their invariances in the characterization of curved arcs404

within the locally tangential curved deflector model. In405

Section 3.1 we formulate the general class of lensing in-406

variances in an operator notation. We then discuss the407
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Figure 7. Illustration of curved arc properties at a fixed radial distance along the azimuthal axis for three di↵erent lens models.
Left: Round lens model, resulting in a fully symmetric appearance of arcs. Middle: elliptical mass distribution, causing a change
in the tangential stretch @t�tan along the azimuth with a 180� symmetry imposed by the lens model symmetry. The curvature
radius and direction, however, remain centered as it is the case for a round mass distribution. Right: Round mass density with
an addition of an external shear component. While the change in the tangential stretch varies almost identically as for the case
of an elliptical mass distribution, the additional unambiguous feature of the shear component is the fact that the direction of
the curvature in the arc is o↵set from the mass distribution center with an altered curvature radius. �

Figure 8. Illustration of the di↵erences of tangential arcs relative to the scale at the Einstein radius for three di↵erent values
of the power-law slope of a power-law mass profile, as specified by the colors in the legend. Top: Curved arcs at di↵erent radii
for a fixed intrinsic source size normalized to match the width at the Einstein radius. Bottom: Di↵erence in the tangential
(dotted-dashed), radial (dashed) and magnification (solid) of the arcs relative to the isothermal density profile (black). The
di↵erentiability between di↵erent constant power-law slopes is provided in both, relative radial stretch, and relative tangential
stretch. Positional constraints on the appearance of multiple images are not part of this figure and are covered in Figure 9. �

from the origin as783

Z ✓in
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d�(✓0)

d✓0
d✓
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0
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Defining the relative radial distance from the Einstein785

radius for the two images as�✓in ⌘ ✓E�✓in and�✓out ⌘786

✓out � ✓E and noting that d�r(✓)/d✓r = �
�1
rad(✓), we can787

write the radial solution of the lens equation as788
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0
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Writing �rad(✓)�1 as a Taylor expansion around ✓E and790

only considering first and second order terms in �✓,791
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What does (strong) lensing measure? 
Gravitational lensing formalism in a curved arc basis

Azimuthal constraints

Radial constraints

weak and strong lensing unified
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