Missing Scalars at the Cosmological Collider

Work in progress with Matthew Reece and Zhong-Zhi Xianyu

Qianshu Lu

Cosmology from Home 2021, July 2021

Qianshu Lu - qianshulu@gmail.com

Cosmological Collider?

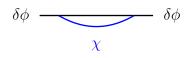
high energy collision produces long-lived particles that we see in detectors

dynamics during inflation produces density perturbations that we see at CMB, large scale structure, 21 cm etc.

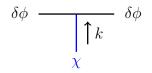
Cosmological Collider?

The energy scale of the "high energy collision" is set by Hubble during inflation, H

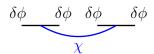
dynamics during inflation produces density perturbations that we see at CMB, large scale structure, 21 cm etc.


Qianshu Lu - qianshulu@gmail.com

The Goal of This Talk

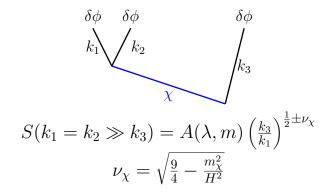

Observational signal of light scalars ($m^2 < H^2$) in cosmological collider

- "missing": particles lighter than hubble are difficult to detect despite their copious production
- Our signal: infer existence of light scalars through the space-dependent mass correction they give to heavier scalars
 a de Sitter "thermal" effect
- Results from calculation in Euclidean de Sitter space
- Preliminary Fisher forcast


It's difficult to infer existence of new particles...

not distinguishable from changes in inflaton potential

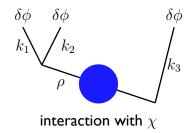
violates momentum conservation, but not observable in ensemble average



four-point function of $\delta\phi$ difficult to measure Dai, Jeong, Kamionkowski 1302.1868

Qianshu Lu - qianshulu@gmail.com

...especially when they are light


Qualitatively different behavior when $m^2 < \frac{9}{4}H^2$ and $m^2 > \frac{9}{4}H^2$ for $m^2 < \frac{9}{4}H^2$, hard to dig out from large background

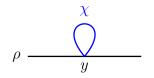
> Chen, Wang, 0911.3380;1205.0160 Pi, Sasaki, 1205.0161 Arkani-Hamed, Maldacena, 1503.08043

Qianshu Lu - qianshulu@gmail.com

Our signal: de Sitter "thermal" mass correction

Two fields, ρ and χ , where $m_\rho^2 > 9/4H^2$, and $m_\chi^2 < H^2$ with interaction $\frac{g}{2}\rho^2\chi^2$

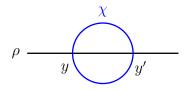
Qianshu Lu - qianshulu@gmail.com


Space-dependence of de Sitter "thermal" mass correction

A light field in de Sitter has $\mathcal{O}(H)$ fluctuation in space due to the "thermal" kick from the background with "temperature" H

Space-dependence of de Sitter "thermal" mass correction

A light field in de Sitter has $\mathcal{O}(H)$ fluctuation in space due to the "thermal" kick from the background with "temperature" H



Integrate the single interaction point y over space, no space-dependence effect, constant mass correction

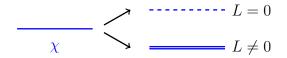
Space-dependence of de Sitter "thermal" mass correction

A light field in de Sitter has $\mathcal{O}(H)$ fluctuation in space due to the "thermal" kick from the background with "temperature" H

When y and y' have super-Hubble distance, see variation in χ values Different correction to m_{ρ} at different point in space ρ at different point in space are less correlated

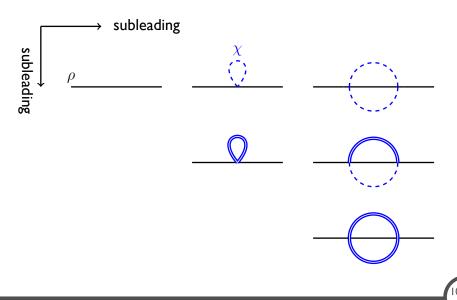
Going to Euclidean de Sitter

- Euclidean de Sitter space is a 4-dimensional sphere
- Momentum in euclidean de Sitter space is quantized (like spherical harmonics)
- A free field propagator can be written as a sum over the discrete dimensionless momentum

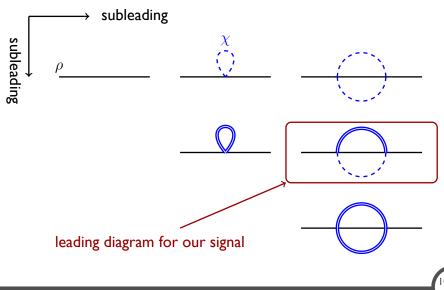

$$\langle f(x_1)f(x_2)\rangle = \sum_{\vec{L}} \frac{Y_{\vec{L}}(x_1)Y_{\vec{L}}^*(x_2)}{m_f^2/H^2 + L(L+3)}$$

Zero mode propagators are enhanced

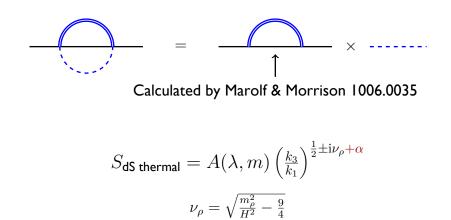
$$\langle f(x_1)f(x_2)\rangle = \sum_{\vec{L}} \frac{Y_{\vec{L}}(x_1)Y_{\vec{L}}^*(x_2)}{m_f^2/H^2 + L(L+3)}$$


When
$$m_f^2 < H^2$$
, $\frac{1}{m_f^2/H^2} > \frac{1}{m_f^2/H^2 + L(L+3)}$

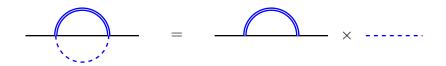
9/14


Qianshu Lu - qianshulu@gmail.com

Double expansion of Feynman diagrams

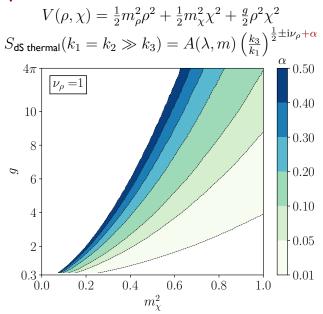

Qianshu Lu - qianshulu@gmail.com

Double expansion of Feynman diagrams


Qianshu Lu - qianshulu@gmail.com

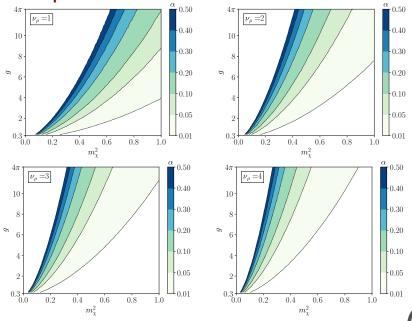
Result: qualitative feature

Result: qualitative feature


Different correction to m_{ρ} at different point in space ρ at different point in space are less correlated

$$S_{\rm dS \ thermal} = A(\lambda,m) \left(\tfrac{k_3}{k_1} \right)^{\frac{1}{2} \pm {\rm i} \nu_\rho + \alpha}$$

$$\nu_{\rho} = \sqrt{\frac{m_{\rho}^2}{H^2} - \frac{9}{4}}$$



Result: quantitative feature

Qianshu Lu - qianshulu@gmail.com

Result: quantitative feature

Qianshu Lu - qianshulu@gmail.com

Missing Scalars at the Cosmological Collider

/14

Observational prospect

$$S_{\text{dS thermal}} = A(\lambda, m) \left(\frac{k_3}{k_1}\right)^{\frac{1}{2} \pm i\nu_{
ho} + \alpha}$$

 $S_{\text{dS thermal}}$ has the same dependence on ν_{ϕ} and α , up to a phase shift

Meerburg, Münchmeyer, Munõz, Chen 1610.06559 Fisher forecast for 21 cm surveys: $\Delta v_{\rho} \approx 0.01$ for $f_{\rm NL} = 1 \Rightarrow \alpha_{\rm min} \approx 0.01$

Observational prospect

$$S_{dS \ thermal} = A(\lambda, m) \left(\frac{k_3}{k_1}\right)^{\frac{1}{2} \pm i\nu_{
ho} + \alpha}$$

 $S_{dS \ thermal}$ has the same dependence on ν_{ϕ} and α , up to a phase shift

Meerburg, Münchmeyer, Munõz, Chen 1610.06559 Fisher forecast for 21cm surveys: $\Delta v_{
ho} \approx 0.01$ for $f_{\rm NL} = 1 \Rightarrow \alpha_{\rm min} \approx 0.01$

 $\alpha_{\rm max} = 1/2$ for this Fisher forecast

Conclusion

- Light fields χ during inflation are difficult to detect in cosmological collider through direct interaction with inflaton
- But they can imprint unique de Sitter "thermal" mass correction on a massive field ρ that couples to the inflaton, causing inflaton bispectrum to be less correlated at large squeezedness
- In Euclidean de Sitter space, the zero mode of the light field is enhanced compared to nonzero mode, which help simplify calculations
- The de Sitter "thermal" mass correction is potentially observable at large-scale structure and 21 cm experiments for $\mathcal{O}(1) \ \chi \rho$ coupling and $m_{\chi}^2 \lesssim H^2$

