Aspects of Dark Energy Universe with Barboza Alcaniz Zhu and Silva Redshift Parameterization

Promila Biswas. Department of Mathematics The University of Burdwan "Cosmology from Home 2021"

June 22, 2021

- 1 Introduction
- 2 Mathematical Constructions
- 3 Data Analysis
- 4 Behaviours of Cosmological Parameters
- 5 Brief Conclusions and Discussions
- 6 References

Cosmic Acceleration : Reverting back Λ

To justify the cosmic acceleration, Einsteins equation was modified.

Cosmic Acceleration : Reverting back ∧

To justify the cosmic acceleration, Einsteins equation was modified. Modification of the left hand side $(G_{\mu\nu})$ leaded to modified gravity theories and the right hand sides $(T_{\mu\nu})$ modification gave us the idea of exotic matters like dark energies.

Cosmic Acceleration : Reverting back Λ

To justify the cosmic acceleration, Einsteins equation was modified. Modification of the left hand side $(G_{\mu\nu})$ leaded to modified gravity theories and the right hand sides $(T_{\mu\nu})$ modification gave us the idea of exotic matters like dark energies. However, Einsteins cosmological constant is seemed to be fit till date.

What is Dark Energy & How it permeates all the Cosmos?

Dark Energy is a mysterious repulsive force seems to dominate the Cosmos and it permeates all the cosmos, exerting negative pressure to accelerate the expansion of the universe. 68% of the universe is dark energy. Dark matter makes up about 27%. The rest - everything on earth is less than 5% of the universe.

Credit: thesciencegreek.org

Motivation of our work

- We want to study the natures of Barboza Alcaniz Zhu and Silva redshift parameterization [1] dark energy model. We constrain the free parameters of the model under differential ages data.
- We want to show the fractional dimensionless density parameter for this dark energy model either grows up with time or starts to dominate that of matter since recent past.
- We want to find out some cases where future deceleration takes place. We analyse the space of statefinder parameters [2].

Equation of state of Barboza, Alcaniz, Zhu and Silva [1] given as

$$\omega_d = \omega_0 - \omega_1 \frac{(1+z)^{-\beta} - 1}{\beta}$$

Basic Calculations

We will use the conservation equation,

$$\dot{\rho} + 3H(\rho + p) = 0 \tag{1}$$

We get solving (1) for our dark energy model,

$$\rho_d(z) = \rho_{d_0}(1+z)^{\frac{3\{\omega_1 + \beta(1+\omega_0)\}}{\beta}} \exp\left[\frac{3\omega_1}{\beta^2} \{(1+z)^{-\beta} - 1\}\right]$$
(2)

Finally combining, $\rho_{tot} = \rho_{rad} + \rho_m + \rho_d$

$$= \rho_{rad_0} (1+z)^4 + \rho_{m_0} (1+z)^3 + \rho_{d_0} (1+z)^{\frac{3\{\omega_1 + \beta(1+\omega_0)\}}{\beta}}$$

$$exp \left[\frac{3\omega_1}{\beta^2} \{ (1+z)^{-\beta} - 1 \} \right] . \tag{3}$$

We consider FLRW universe where Einstein's field equations turn to be, $\left(\frac{\dot{a}}{a}\right)^2 + \frac{kc^2}{a^2} = \frac{8\pi G}{3} \rho_{tot}$ and $\frac{2\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2 + \frac{kc^2}{a^2} = -\frac{8\pi G}{c^2} \rho_{tot}.$

So, we write Hubble's parameter as redshift's function for flat space,

$$H^2 = H_0^2 \left[\Omega_{rad_0} (1+z)^4 + \Omega_{m_0} (1+z)^3 + \right]$$

$$\Omega_{d_0}(1+z)^{\frac{3\{\omega_1+\beta(1+\omega_0)\}}{\beta}} \exp\left[\frac{3\omega_1}{\beta^2}\{(1+z)^{-\beta}-1\}\right]$$
 (4)

where $\Omega_{i_0}=\frac{8\pi G}{3H_0^2}\rho_{i_0}$, i=rad,m,d represent dimensionless fractional density parameters related to radiation, matter and dark energy respectively.

(ロ) 4回 > 4 至 > 4 至 > 至 り Q (C)

The definition of chi-square as $\chi^2 = \sum \frac{\{H_{obs} - H(z)\}^2}{\sigma^2(z)}$.

BAO peak parameter [3] is defined as $\mathcal{A}_{\mathcal{BAO}} = \frac{\sqrt{\Omega_m}}{E(z_1)^{\frac{1}{3}}} \left\{ \frac{1}{z_1} \int_0^{z_1} E(z)^{-1} dz \right\}^{\frac{2}{3}}$ and for flat FLRW model, the value of $\mathcal{A}_{\mathcal{BAO}}$ is turned to be 0.469 \pm 0.017. So modified chi-squared becomes,

$$\chi_{BAO}^2 = \frac{(A_{BAO} - 0.469)^2}{0.017^2} \tag{5}$$

Shift parameter for CMB power spectrum peak [4] looks like $\Re=\sqrt{\Omega_m}\int_0^{z_2} \frac{dz'}{E(z')}$

$$\chi_{CMB}^2 = \frac{(\mathcal{R} - 1.726)^2}{0.018^2} \tag{6}$$

(ロ) (日) (日) (日) (日)

• If β is highly positive, low ω_1 value is supported with high ω_0 values and vice versa.

- If β is highly positive, low ω_1 value is supported with high ω_0 values and vice versa.
- If $\beta_1 > \beta_2$ then $\theta_{\beta_1} < \theta_{\beta_2}$. However if $\beta_1 > \beta_2$ the span of the confidence contours for the second case is smaller than first one.

- If β is highly positive, low ω_1 value is supported with high ω_0 values and vice versa.
- If $\beta_1 > \beta_2$ then $\theta_{\beta_1} < \theta_{\beta_2}$. However if $\beta_1 > \beta_2$ the span of the confidence contours for the second case is smaller than first one.
- It is observed that $\omega(z=0)=\omega_0$ is perfectly matches with present day observational data when $\beta<0.5$.

- If β is highly positive, low ω_1 value is supported with high ω_0 values and vice versa.
- If $\beta_1 > \beta_2$ then $\theta_{\beta_1} < \theta_{\beta_2}$. However if $\beta_1 > \beta_2$ the span of the confidence contours for the second case is smaller than first one.
- It is observed that $\omega(z=0)=\omega_0$ is perfectly matches with present day observational data when $\beta<0.5$.
- When BAO and CMB tools are applied along with the H(z)-z data, negativeness of EoS at present epoch is reduced.

• If BAO constrain is working with the Hubble parameter data, this model supports ΛCDM within its one sigma confidence.

- If BAO constrain is working with the Hubble parameter data, this model supports ΛCDM within its one sigma confidence.
- Hubble parameter data equipped with BAO constraints together maximally reaches upto a value of EoS = $-0.87^{+0.14}_{-0.14}$ at present time and adding with it CMB tools it reaches up to $-0.68^{+0.09}_{-0.09}$.

- If BAO constrain is working with the Hubble parameter data, this model supports ΛCDM within its one sigma confidence.
- Hubble parameter data equipped with BAO constraints together maximally reaches upto a value of EoS = $-0.87^{+0.14}_{-0.14}$ at present time and adding with it CMB tools it reaches up to $-0.68^{+0.09}_{-0.09}$.
- Variations of ω_0 and ω_1 are almost symmetric.

- If BAO constrain is working with the Hubble parameter data, this model supports ΛCDM within its one sigma confidence.
- Hubble parameter data equipped with BAO constraints together maximally reaches upto a value of EoS = $-0.87^{+0.14}_{-0.14}$ at present time and adding with it CMB tools it reaches up to $-0.68^{+0.09}_{-0.09}$.
- Variations of ω_0 and ω_1 are almost symmetric.
- ullet is observed to be negatively skewed and found to vary through a long range though.

EoS vs z

• For +ve β , as z is decreasing to the limit 0, effective ω_d becomes +ve to -ve.

EoS vs z

- For +ve β , as z is decreasing to the limit 0, effective ω_d becomes +ve to -ve.
- At z=0 these curves are ξ or j=-1 and decrease as we move towards the z=-1 value. If β is -ve, the ω_d stays -ve always.

EoS vs z

- For +ve β , as z is decreasing to the limit 0, effective ω_d becomes +ve to -ve.
- At z=0 these curves are ξ or j=-1 and decrease as we move towards the z=-1 value. If β is -ve, the ω_d stays -ve always.
- Except $\beta=0.5$ case, all other the rate of changes in the DE EoS +ve cases are decreasing as z is decreasing. As we choose β to be -ve, $d\omega_d$ is found to be increasing with decreasing z.

$$\Omega_{i_0} = \frac{8\pi G}{3H_0^2} \rho_{i_0}$$
, $i = rad, m, d$

 If redshift is -ve, the dimensionless densities fall to vanish in future infinity.

$$\Omega_{i_0}=rac{8\pi G}{3H_0^2}
ho_{i_0}$$
, $i=rad,m,d$

- If redshift is -ve, the dimensionless densities fall to vanish in future infinity.
- To justify, we may suggest that some unknown matter density is involved in future. As this has not theoretically been incorporated, the sum of the mass fraction falls.

$$\Omega_{i_0} = \frac{8\pi G}{3H_0^2} \rho_{i_0}$$
, $i = rad, m, d$

- If redshift is -ve, the dimensionless densities fall to vanish in future infinity.
- To justify, we may suggest that some unknown matter density is involved in future. As this has not theoretically been incorporated, the sum of the mass fraction falls.
- For +ve β , it is observed that in the past Ω_m dominated Ω_d and in the recent past the opposite happened. If β is -ve, Ω_d dominates all over the +ve domain of redshift.

Deceleration Parameter

we study deceleration parameter given as,

$$q = -\frac{\ddot{a}}{aH^2} = -(1 + \frac{\dot{H}}{H^2})$$
 , (7)

where $H = \frac{dH}{dt} = aH\frac{dH}{da}$. For our study, q is expressed as

$$q = \frac{\mathsf{a}^{3(\omega_0 + \frac{\omega_1}{\beta})}\beta(\mathsf{a}\Omega_{m_0} + 2\Omega_{\mathsf{rad}_0}) + \mathsf{a} \, \exp\left\{\frac{3(\mathsf{a}^\beta - 1)\omega_1}{\beta^2}\right\}\Omega_{d_0}\left\{\beta(1 + 3\omega_0) - 3\omega_1(\mathsf{a}^\beta - 1)\right\}}{2\beta\left\{\mathsf{a} \, \exp\left\{\frac{3(\mathsf{a}^\beta - 1)\omega_1}{\beta^2}\right\}\Omega_{d_0} + \mathsf{a}^{3(\omega_0 + \frac{\omega_1}{\beta})}(\mathsf{a}\Omega_{m_0} + \Omega_{\mathsf{rad}_0})\right\}}$$

Deceleration Parameter Graphs

• For +ve β , we observe a deceleration in the past, then through a phase transition accelerating era begins and again in future, a decelerating era begins and again in future, a decelerating phase is predicted to obtain.

Deceleration Parameter Graphs

- For +ve β , we observe a deceleration in the past, then through a phase transition accelerating era begins and again in future, a decelerating era begins and again in future, a decelerating phase is predicted to obtain.
- Much interesting result is found to obtain for -ve β cases. An acceleration is seen in the past and even at present time. However, in future a deceleration is expected to take place.

Statefinder Parameter $\{r, s\}$

Next we study the variations of statefinder parameters r and s. The statefinder parameters [2] are described as,

$$r = \frac{\ddot{a}}{aH^3} \tag{8}$$

$$s = \frac{r-1}{3(q-\frac{1}{2})} \qquad , \tag{9}$$

where a, \ddot{a} , H, q are the scale factor of the universe, third order differentiation with respect to the cosmic time t, the Hubble parameter and the deceleration parameter respectively.

Statefinder Parameter Graphs

Statefinder Parameter Graphs

We plot s vs r in the figures 7(a)-(c). For all the cases the curves are increasing for increasing r. r vs q graphs have been plotted in figures 8(a)-(c). The graphs are found to be enhanced periodically. It is observed that infinite jumps are possible.

 First we have constrained the free parameters of the model with a Hubble parameter vs redshift dataset accompanied with baryon acoustic oscillations and cosmic microwave background tools.
 Differential ages method is used to collect forty six data points.

- First we have constrained the free parameters of the model with a Hubble parameter vs redshift dataset accompanied with baryon acoustic oscillations and cosmic microwave background tools.
 Differential ages method is used to collect forty six data points.
- As we increase negativity of β , the major axis of the confidence contours rotate with a +ve angle in the $\omega_0-\omega_1$ plane. This means if negativity of β increases, low ω_0 high ω_1 values are accepted to stay constrained with the chosen dataset. Negativity of β constrains the parameters more in a shorter confidence region.

- First we have constrained the free parameters of the model with a Hubble parameter vs redshift dataset accompanied with baryon acoustic oscillations and cosmic microwave background tools.
 Differential ages method is used to collect forty six data points.
- As we increase negativity of β , the major axis of the confidence contours rotate with a +ve angle in the $\omega_0-\omega_1$ plane. This means if negativity of β increases, low ω_0 high ω_1 values are accepted to stay constrained with the chosen dataset. Negativity of β constrains the parameters more in a shorter confidence region.
- Combined study of the parameters show that the best fits are likely to be different. Analysis shows that when β is high, ω_1 can take a larger span and for ω_0 and β the scenario is just the opposite.

- First we have constrained the free parameters of the model with a Hubble parameter vs redshift dataset accompanied with baryon acoustic oscillations and cosmic microwave background tools.
 Differential ages method is used to collect forty six data points.
- As we increase negativity of β , the major axis of the confidence contours rotate with a +ve angle in the $\omega_0-\omega_1$ plane. This means if negativity of β increases, low ω_0 high ω_1 values are accepted to stay constrained with the chosen dataset. Negativity of β constrains the parameters more in a shorter confidence region.
- Combined study of the parameters show that the best fits are likely to be different. Analysis shows that when β is high, ω_1 can take a larger span and for ω_0 and β the scenario is just the opposite.
- We observe that the best fits for positive β cases are pointed towards nearly -1 values at the present epoch. So we conclude Λ CDM is supported with zero redshift or present time. It is followed for positive β as z reduces curves and the rate of decrease changes at z=0.

• We observe, however, that our prediction with BAZS at z=0 that the EoS will have a value a little lower than -1. When we add a BAO constrain along with the enlist OHD. This fact is more prominent.

- We observe, however, that our prediction with BAZS at z=0 that the EoS will have a value a little lower than -1. When we add a BAO constrain along with the enlist OHD. This fact is more prominent.
- Early universe shows the matter density to dominate over dark energy density.

- We observe, however, that our prediction with BAZS at z=0 that the EoS will have a value a little lower than -1. When we add a BAO constrain along with the enlist OHD. This fact is more prominent.
- Early universe shows the matter density to dominate over dark energy density.
- We observe that a future deceleration is possible for both of β positive and negative cases. Even after being positive.

- We observe, however, that our prediction with BAZS at z=0 that the EoS will have a value a little lower than -1. When we add a BAO constrain along with the enlist OHD. This fact is more prominent.
- Early universe shows the matter density to dominate over dark energy density.
- We observe that a future deceleration is possible for both of β positive and negative cases. Even after being positive.
- q turns to be a finite valued function. This makes this model special to be studied alongside CPL, ΛCDM and other redshift dependent EoSs.

- We observe, however, that our prediction with BAZS at z=0 that the EoS will have a value a little lower than -1. When we add a BAO constrain along with the enlist OHD. This fact is more prominent.
- Early universe shows the matter density to dominate over dark energy density.
- We observe that a future deceleration is possible for both of β positive and negative cases. Even after being positive.
- q turns to be a finite valued function. This makes this model special to be studied alongside CPL, ΛCDM and other redshift dependent EoSs.

References

- Barboza, Jr., E. M., Alcaniz, J. S., Zhu, Z.-H., & Silva, R. :- Phys. Rev. D, 80, 043521 (2009).
- Sahni, V., Saini, T. D., Starobinsky, A. A., Alam, U. :- JETP Lett., 77, (2003) 201-206; Pisma Zh. Eksp. Teor. Fiz., 77, 249-253 (2003).
- Hicken, M et al. :- Astrophys. J., **700**, 1097 (2009).
- Efstathiou, G.: Mon. Not. R. Astron. Soc., **310**, 842 (1999) arXiv:astro-ph/9904356v1.
- Perlmutter, S., Aldering, G., Goldhaber, G. et al.: "Measurements of Omega and Lambda from 42 High-Redshift Supernovae", Astrophys. J., **517**, (1999) [arXiv:astro-ph/9812133].
- Riess A. G., Filippenko, A. V., Challis, P. et al., "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant", Astron. J., 116, (1998) 1009

19 / 20

4 D F 4 P F F F F F F 990