
Cosmology From Home 2021

Observational constraints on the possibility that Sterile Neutrinos cause Anti-Gravity

Priyamvada Kameshwar University of Delhi

Work in collaboration with: Prof. Patrick Das Gupta (University of Delhi) and Varun Srivastava (IISER Kolkata)

pkameshwar@physics.du.ac.in

A novel idea:

Cosmology From Home 2021

Anti-Gravity from Sterile Neutrinos

Can the acceleration of the universe be due to repulsive gravity caused by sterile neutrinos?

Overview

- Theory
- Modified FLRW Equations
- Results

Cosmology From Home 2021

Anti-Gravity from Sterile Neutrinos

Motivation

- more number of supernovae explosions.
- Stellar neutrinos thus produced copiously.
- IF sterile neutrinos do cause repulsive gravity, then:
- universe.

• Greater flux of sterile neutrinos — accelerated expansion in late-time

Modified Einstein Field Equation

with sterile neutrinos.

• Remove the cosmological constant term i.e. $\Lambda = 0$, and replace it with $(T_{\mu\nu})_{s\nu}$

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\frac{8}{2} g_{\mu\nu}$$

Cosmology From Home 2021

Anti-Gravity from Sterile Neutrinos

• Introduce a negative gravitational constant, called -G'(G' > 0) associated

 $8\pi G'$ $8\pi G$ $c^{4} \mu \nu - c^{4} (T_{\mu\nu})_{s\nu}$

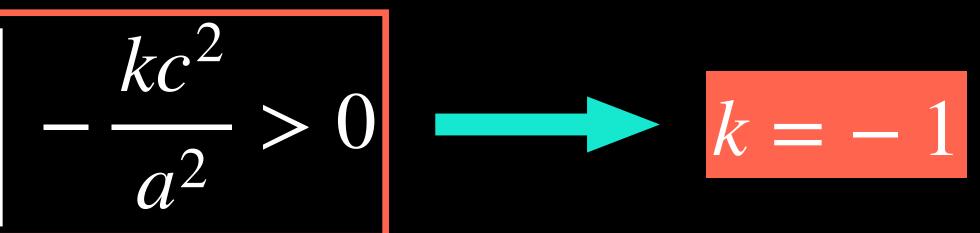

• Now re-writing the modified FLRW Equations:

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3} \left[\rho_m + \rho_r \right]$$

$$\frac{2\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2} = -\frac{8\pi G}{c^2} \left[p_m + p_r - \frac{G'}{G} p_{s\nu} \right]$$

Cosmology From Home 2021

Anti-Gravity from Sterile Neutrinos



• Rearranging Eqn. (1), an important condition is obtained:

$$H^{2} = \frac{8\pi G}{3}\rho_{m} \left[1 - \frac{G' \rho_{s\nu}}{G \rho_{m}}\right]$$

- For an accelerating universe, 1st term of RHS is negative.
- remain positive}.

• This implies 2nd term of RHS has to be negative i.e. k = -1, for LHS to

Anti-Gravity from Sterile Neutrinos

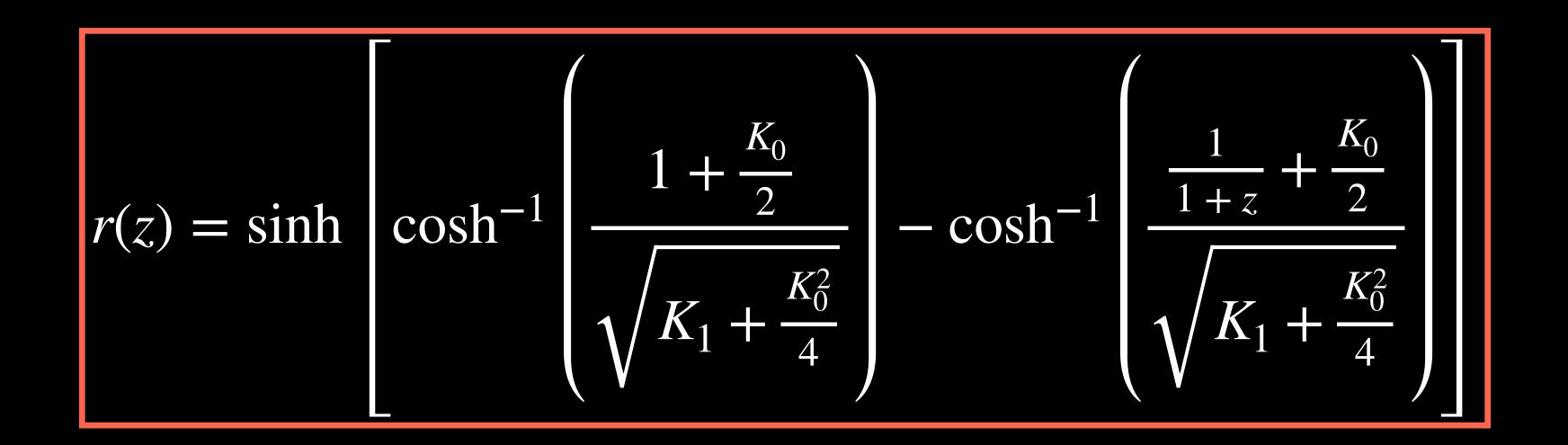
Sterile Neutrinos - How Many?

Massive Sterile Neutrinos

 $r^{t_0} cdt$

• Use this to obtain the radial distance as a function of redshift, z.

Cosmology From Home 2021


Anti-Gravity from Sterile Neutrinos

Light Sterile Neutrinos

 $\int_{t}^{0} \frac{cdt}{a(t)} = -\int_{r}^{0} \frac{dr}{\sqrt{1 - kr^2}}$

Very Light Sterile Neutrinos

• For very light sterile neutrinos, the energy density can be taken similar to that of radiation. The radial distance is given by the formula:

• Here,
$$K_0 = \frac{H_0^2 a_0^2 \Omega_{m,0}}{c^2}$$
 and $K_1 = K_0$

Cosmology From Home 2021

$$G' \Omega_{s\nu,0}$$

 $G \Omega_{m,0}$

Anti-Gravity from Sterile Neutrinos

Massive Sterile Neutrinos

• For massive sterile neutrinos, the energy density is roughly similar to that of ordinary matter. The radial distance is given by the formula:

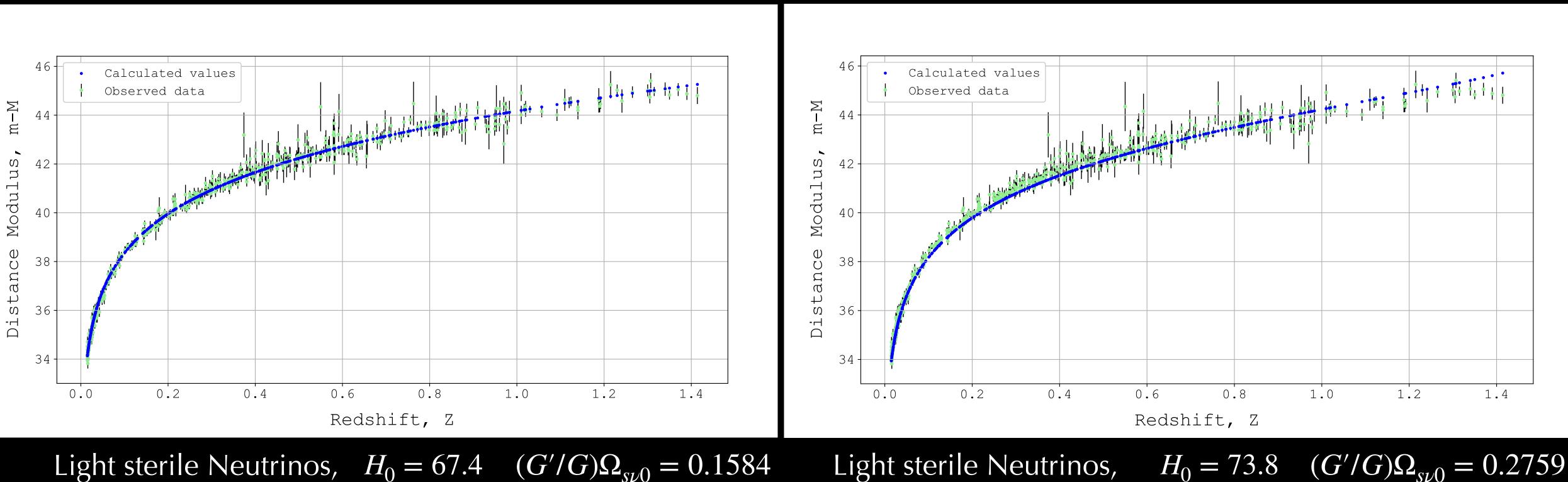
$$r(z) = \sinh\left[\frac{c}{a_0H_0}\frac{1}{\sqrt{K_3}}\left(\ln\left|\frac{\sqrt{K_2(1+z)+K_3}-\sqrt{K_3}}{\sqrt{K_2(1+z)+K_3}+\sqrt{K_3}}\right| - \ln\left|\frac{\sqrt{K_2+K_3}-\sqrt{K_3}}{\sqrt{K_2+K_3}+\sqrt{K_3}}\right|\right)\right]$$

• With,
$$K_2 = \Omega_{m,0} - \alpha$$
 and $K_3 = -\frac{\alpha}{\alpha^2}$

Cosmology From Home 2021

Anti-Gravity from Sterile Neutrinos

Comparing with Observations


 Using the previously computed radial distances, calculate the distance modulus values:

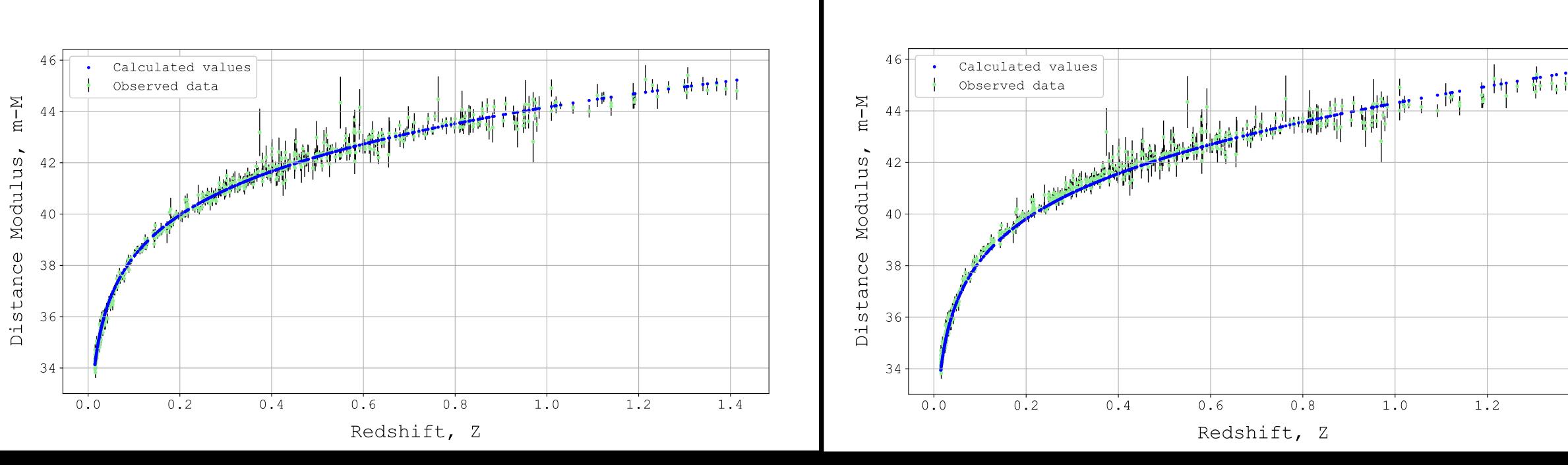
$$m - M = 5 \log_{10} \left(\frac{d_L(z)}{10pc} \right)$$

- Observational data used: Type Ia Supernovae data from the Union 2.1 Catalogue (Supernova Cosmology Project, Suzuki et al., 2012).
- redshift, with that obtained from SNIa observations.

Plot and compare the computed distance modulus values as a function of the

Results

Light sterile Neutrinos, $H_0 = 67.4$ $(G'/G)\Omega_{s\nu 0} = 0.1584$


Cosmology From Home 2021

Anti-Gravity from Sterile Neutrinos

•	•
	ł
_	
•	. 4

Results

Massive Sterile Neutrinos, $H_0 = 67.4$ $(G'/G)\Omega_{s\nu 0} = 0.3579$ Massive Sterile Neutrinos, $H_0 = 73.8$ $(G'/G)\Omega_{s\nu 0} = 0.7238$

Cosmology From Home 2021

Anti-Gravity from Sterile Neutrinos

¦₊ † _†	•
1.	. 4

Summary Table

values:

HO	$\frac{G'}{G}\Omega_{S\nu}$	
	Massive Case	Light Case
67.4	0.3579	0.1584
69.8	0.5243	0.2199
73	0.6904	0.2685
73.8	0.7238	0.2759

Cosmology From Home 2021

• A summary of the various combinations used and the best fit parameter

Anti-Gravity from Sterile Neutrinos

Analysis

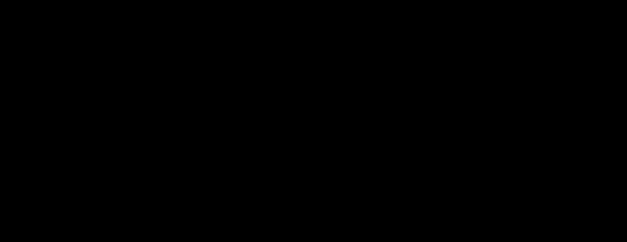
- G'
- estimated using weighted least squares minimization.
- Values of H_0 ranging from 67.4 to 73.8.

• The theoretically computed values of (m-M) were plotted and compared with the observed values, according to best fit of the free parameter,

• Different combinations of H_0 and $\frac{G'}{G}\Omega_{s\nu}$ were studied. Goodness of fit

• Satisfactory fits even with recent findings of $H_0 \sim 74$ (Pesce et al., 2020)

Future Prospect


- contribution of sterile neutrinos.
- A preliminary calculation shows the addition of the -G' term and
- structure formation.

• The theory needs to be refined further to include the time dependent

repulsive gravity does not affect the present scenario of early universe.

• The theory can hold a wide number of applications in cosmology and

Thank your