Gaussian Process Regression: An Application in Radio Cosmology

arXiv:2105.12665

Paula Soares

In collaboration with Catherine Watkinson, Steve Cunnington and Alkistis Pourtsidou

Large-scale structure

- How matter is structured on a large scale
- Tells us a lot about our universe, e.g.:
 - ACDM parameter and alternatives
 - Physics of dark components
 - Tests to general relativity
- Galaxy surveys can trace it, but can be expensive and time consuming

HI intensity mapping

- After reionisation, most of the neutral hydrogen (HI) can be found in galaxies
 - HI is a good tracer of the large-scale structure
- Can quickly map large areas of the sky
- Low angular resolution, high frequency resolution

Higher intensity = more HI present = more matter present

= less HI present

= less matter present

The Foreground Problem

- Foreground: any other signal we detect which is not the desired HI signal
- Astrophysical foregrounds dominate over the 21cm cosmological signal
 - Galactic synchrotron
 - Point sources
 - Galactic and extra-galactic free-free emission
- They dominate over the HI signal, so need to be removed

Foregrounds: bright and smooth in frequency HI signal: faint and not smooth in frequency

Motivation

- **GPR** has already been applied as a foreground removal technique successfully in the context of the Epoch of Reionisation (see e.g. Mertens et al. 2018 [arXiv:1711.10834] and public code ps_eor1)
 - * How does GPR perform in the case of low redshift, single-dish Intensity Mapping?
 - * How does it compare to other methods e.g. PCA?
 - * Could we use it for future surveys such as the SKA?

Gaussian Process

Gaussian Process

A Gaussian process is a Gaussian distribution over infinite dimensions

A Gaussian process is a Gaussian distribution defined by:

- Mean function: $m(\nu) \equiv m$
- Covariance function: $k(\nu, \nu) \equiv K$

$$f \sim \mathcal{N}(m, K)$$

random variable

Covariance Function

a.k.a. kernel, kernel function, covariance

Typically your covariance function $k(\nu, \nu)$ is itself a function of 3 hyperparameters:

- Lengthscale (ℓ): describes how correlated the data is Find best fitting values Variance (σ^2): describes the amplitude of the signal
- Spectral parameter (η) : describes how "smooth" the data is Choose a value

Gaussian Process Regression

Gaussian Process Regression

What is it?

Usually zero!

Assume you have some data (d) which can be describes as a *Gaussian process* with mean function $m(\nu)$ and covariance function $k(\nu, \nu)$. We can use this to make predictions for what the data would look like at a new frequency (ν') :

SKA-like Simulations

Assume our data, and each of its components (foreground, HI, noise) is a

Gaussian process

Our data's covariance function:

$$K = K_{\text{fg}} + K_{21} + K_{\text{noise}}$$

 $K_{\text{fg}} = K_{\text{smooth}} + K_{\text{pol}}$

Smooth foregrounds K_{smooth}

- Correlated (large ℓ)
- High amplitude (large σ^2)
- Overall smooth (large η)

Polarised foregrounds K_{pol}

- Medium correlated (medium ℓ)
- Medium amplitude (medium σ^2)
- Overall smooth (large η)

21cm signal K_{21}

- Not correlated (small ℓ)
- Small amplitude (small σ^2)
- Not smooth (small η)

Finding the best hyperparameters

Finding the best-fitting covariance function K given our data

- We assume our data is Gaussian, so we can calculate the **marginal likelihood** analytically (fast), and find the hyperparameters ℓ and σ^2 that maximise it (e.g. *gradient descent*)
 - Do this for different choices of η , and compare the evidence to find the best choice
- Also can use *nested sampling*: more robust estimate of the evidence, and yields posterior distributions

Optimised covariance function

The best-fitting covariance function K given our data

21cm signal K_{21}

- Exponential function ($\eta = \frac{1}{2}$)
- Small lengthscale ℓ
- Small variance σ^2

Polarised foreground K_{pol}

- Radial basis function $(\eta \to \infty)$
- Medium lengthscale ℓ
- Medium variance σ^2

Smooth foreground K_{smooth}

- Radial basis function $(\eta \to \infty)$
- Large lengthscale ℓ
- Large variance σ^2

Foreground removal

How does GPR remove foregrounds? By predicting them!

Now we have: our data (d), its mean function (zero) and its best fitting covariance function $(K = K_{\rm fg} + K_{\rm 21} + K_{\rm noise})$. We can use this to *predict what the foregrounds look like in our frequency range*:

$$\begin{bmatrix} d \\ f_{\text{fg}} \end{bmatrix} = \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{\text{fg}} + K_{21} + K_{\text{noise}} & K_{\text{fg}} \\ K_{\text{fg}} & K_{\text{fg}} \end{bmatrix} \right)$$
Foreground

covariance function

Our foreground removal pipeline

How to remove foregrounds with GPR

- 1. Assume your data can be described as a Gaussian process, with covariance function: $K = K_{fg} + K_{21} + K_{noise}$ Hardest part
- 2. Find the best-fitting covariance function K using e.g. nested sampling
- 3. Use your data and its covariance function to predict the foregrounds
- 4. Remove foreground prediction from your data!

If you're interested in running this pipeline...

Our code gpr4im is available at: github.com/paulassoares/gpr4im

Easy to install: pip install gpr4im

Introductory notebooks that run through the pipeline step-by-step

Results

No polarisation

- True HI power spectrum is the black solid line, what we want to recover
 - GPR results are in green
 - PCA results are in red ($N_{\rm fg}=2$) and blue ($N_{\rm fg}=3$)
- Bottom panel shows percentage residual difference from truth
- Pink line shows k-bin below which GPR diverges above 10% from the truth

Results

No polarisation

- Very good
- GPR is better than PCA on all scales
- GPR recovers the full range of the radial power spectrum within 10% residual
- Less good
- GPR better on small scales where beam dominates
- GPR cannot recover full range of transverse power spectrum within 10% residual

GPR is better in the radial direction

Results

With polarisation

- GPR results are in green
- PCA results are in red ($N_{\rm fg} = 6$) and blue ($N_{\rm fg} = 7$)
- GPR performs *worse* in the presence of polarised foregrounds
- Somewhat better than PCA on small scales, but PCA $(N_{\rm fg}=7)$ can recover larger scales

Bandwidth/redshift dependence

High frequency, low redshift

- GPR results are in green
- PCA results are in red ($N_{\rm fg}=3$) and blue ($N_{\rm fg}=4$)
- In this case, GPR performs worse than PCA $(N_{\rm fg}=4)$, and worse than in the *full bandwidth* case

Bandwidth/redshift dependence

Low frequency, high redshift

- GPR results are in green
- PCA results are in red ($N_{\rm fg}=4$) and blue ($N_{\rm fg}=5$)
- In this case, both PCA cases lead to under-cleaning, but GPR only over-cleans, and can access larger scales, so GPR performs better
- It also works better than in the full bandwidth case

Bandwidth/redshift dependence

- Is half bandwidth better than full bandwidth? e.g. Hothi et al. (2020)
 - Unclear: The low redshift case is *worse* than the full bandwidth, but the high redshift is *better*
- Interesting that the high redshift (brighter foregrounds) case is better

Key takeaways

- It is possible to run **GPR** for foreground removal technique in the case of single-dish, low redshift HI intensity mapping
- GPR performs better in the radial direction than in the transverse direction
- GPR performs better than PCA in the no polarisation case, and similar when including polarisation
 - Polarisation leakage makes GPR foreground removal more difficult
- GPR performs better at high redshifts than low redshifts
- For PCA, we constantly needed to change $N_{\rm fg}$ depending on bandwidth size, missing channels, including polarisation, etc.
 - GPR does not require this fine tuning, it finds the best fitting covariance model given the data
- Our code is available on github.com/paulassoares/gpr4im