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Outline
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1. Train a deep learning algorithm to learn mapping between initial 
conditions and final cosmic structures from N-body simulations 

2. Develop techniques to physically interpret the learnt mapping 

3. Gain new knowledge about the underlying physics of 
cosmological structure formation



Cosmological structure formation

Today’s large-scale 
structure

Perturbations in the density of 
matter at early times

ΛCDM model successfully describes evolution of matter in Universe
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• N-body simulations: most accurate method but difficult to physically interpret 

• Analytic models: provide qualitative understanding due to limited model complexity

Dark matter halo formation



Approach: Train ML algorithm to learn mapping between initial 
conditions and dark matter halos from N-body simulations

Aim: gain new physical insights into dark matter halo formation

Insights into dark matter halo collapse from ML?

Lucie-Smith, Peiris, Pontzen, Nord, Thiyagalingam (2020) 
Lucie-Smith, Peiris, Pontzen (2018, 2019)5



Initial conditions 
density field 

 
Halo mass

Mtruth

 
Halo mass
Mpredicted

3D convolutional neural network

Fully-connected layers

.… …

Convolutional layers

… …
…

N-body simulation

t = 0.8 Gyr t = 3.2 Gyr t = 6.1 Gyr t = 13.7 Gyr

t = 17.1 Myr

… … …

A deep learning (DL) approach to halo formation

 

Lucie-Smith, Peiris, Pontzen, Nord, Thiyagalingam (2020) 6



ICs-to-halo mass mapping for every particle

z = 7 z = 2 z = 1 z = 0z = 99

N-body simulation

Particle Particle ends 
up in a halo

Input:  
Initial density field centred 
on particle’s position

Output:  
Mass of halo to which particle 
belongs at z = 0

CNN
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Construct ICs-to-halo mass mapping for every particle

Input:  
Initial density field centred 
on particle’s position

Output:  
Mass of halo to which particle 
belongs at z = 0

CNN

… …

By training network on many particles across many simulations, model learns to 
identify aspects of initial density field relevant to final halo mass
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z = 7 z = 2 z = 1 z = 0z = 99

N-body simulation

Particle Particle ends 
up in a halo



Advantages: 
• no featurization: CNN learns directly from ICs “raw data” 
• CNN identifies which ICs features are relevant for halo mass 

 
Disadvantages: 

• DL algorithms are “black-box” algorithms 
• how do we extract physical knowledge from a DL algorithm?

.… … … …
… … … … Mpredicted

3D convolutional neural network

Initial conditions 
density field 

Why convolutional neural networks?



The CNN model
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. Mpredicted

Initial conditions 
density field 
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Feature extraction part: 6 convolutional layers

Predictive part: 
2 fully-connected layers

• Input convolved with kernels, s.t. each kernel detects a specific feature 

• Features extracted hierarchically:  low-level to high-level features



Training the CNN model

Loss = ℒpred(Mtrue(x), Mpredicted(x, w)) + ℒreg(w)

Find the set of parameters  that minimise the loss function:⃗w

Regularization term: 
Priors on the weights to  
(i) regularise network & reduce overfitting  
(ii) compress the model (sparsity)

Predictive term: 
Negative log of a Cauchy likelihood
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Halo mass predictions from the initial conditions

Test model on dark matter particles from independent simulations



Interpreting the DL model

Average 
over shells

Raw-density training set

Averaged-density training set

CNN M raw
predicted

CNN Maveraged
predicted

Interpretability technique: 
1. Remove part of the information carried by inputs & re-train model 
2. Measure the resulting change in the model's performance.

Application: 
1. Remove anisotropic information from the initial density field 

Lucie-Smith, Peiris, Pontzen, Nord, Thiyagalingam (2020) 13



Interpreting the learnt mapping between ICs and halos
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Average 
over shells

Anisotropic information plays no role in establishing final halo masses
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Iten et al. (2018; arXiv:1807.10300) 
Lucie-Smith, Peiris, Pontzen, Nord, Thiyagalingam(in prep) 

Latent variables encode most relevant aspects of initial 
conditions about final halo masses

Initial conditions 
density field

Latent 
representation

Work in progress: knowledge extraction

Supervised variational encoder

σi

µi-1

..

µ1

µ2

µi

σi-1

σ1

σ2

𝒩(μ, σ)

....

..

Halo mass

15



Conclusions

• Interpretable DL framework enabled new insights into role of anisotropic 
information in initial density field in establishing final halo masses 

• Work in progress: employing “supervised variational encoder” to extract 
new physical knowledge about cosmological structure formation 

• Future work: application to other properties of halos & other cosmic 
structures such as voids

arXiv:2011.10577luisals@mpa-garching.mpg.de
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