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Outline

. Train a deep learning algorithm to learn mapping between initial
conditions and final cosmic structures from N-body simulations

. Develop techniques to physically interpret the learnt mapping

. Gain new knowledge about the underlying physics of
cosmological structure formation



Cosmological structure formation

ACDM model successfully describes evolution of matter in Universe

Perturbations in the density of Today’s large-scale
matter at early times structure



Dark matter halo formation

Gaussian random field
7=99

Dark matter halos

N-body simulations: most accurate method but difficult to physically interpret

Analytic models: provide qualitative understanding due to limited model complexity
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Insights into dark matter halo collapse from ML?

Approach: Train ML algorithm to learn mapping between initial

conditions and dark matter halos from N-body simulations

Aim: gain new physical insights into dark matter halo formation

Lucie-Smith, Peiris, Pontzen, Nord, Thiyagalingam (2020)
S Lucie-Smith, Peiris, Pontzen (2018, 2019)



A deep learning (DL) approach to halo formation
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ICs-to-halo mass mapping for every particle

Particle Particle ends
up in a halo
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Construct ICs-to-halo mass mapping for every particle

Particle Particle ends
up in a halo

Input:
Initial density field centred
on particle’s position

Output:
Mass of halo to which particle

belongsatz =0

CNN

By training network on many particles across many simulations, model learns to
Identify aspects of initial density field relevant to final halo mass
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Why convolutional neural networks?
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3D convolutional neural network

Advantages:
. no featurization: CNN learns directly from ICs “raw data”

« CNN identifies which ICs features are relevant for halo mass

Disadvantages:
- DL algorithms are “black-box” algorithms

- how do we extract physical knowledge from a DL algorithm?



The CNN model

Predictive part:
2 fully-connected layers
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Feature extraction part: 6 convolutional layers

e Input convolved with kernels, s.t. each kernel detects a specific feature
e Features extracted hierarchically: low-level to high-level features
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Training the CNN model
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Find the set of parameters W that minimise the loss function:

Loss = &Z pred(Mtrue(x)’ Mpredicted(x’ W)) +Z reg(w)

l l

Predictive term: Regularization term:

Negative log of a Cauchy likelihood Priors on the weights to
(1) reqularise network & reduce overfitting
(i) compress the model (sparsity)
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Halo mass predictions from the initial conditions

Test model on dark matter particles from independent simulations
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Interpreting the DL model

Interpretability technique:

1. Remove part of the information carried by inputs & re-train model
2. Measure the resulting change in the model's performance.

Application:
1. Remove anisotropic information from the initial density field
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Interpreting the learnt mapping between ICs and halos
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Anisotropic information plays no role in establishing final halo masses
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Work in progress: knowledge extraction

Supervised variational encoder

Latent
representation
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Latent variables encode most relevant aspects of initial
conditions about final halo masses

Iten et al. (2018; arXiv:1807.10300)
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Conclusions

- Interpretable DL framework enabled new insights into role of anisotropic
information in initial density field in establishing final halo masses

- Work in progress: employing “supervised variational encoder” to extract
new physical knowledge about cosmological structure formation

- Future work: application to other properties of halos & other cosmic
structures such as voids
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