

Modelling electron clouds of galaxy clusters with strong gravitational lensing

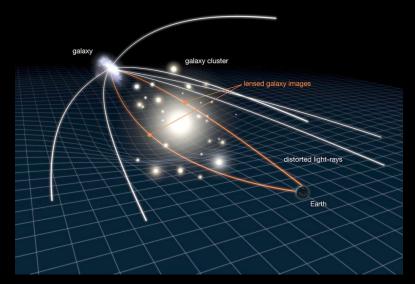
Collaborators: C. BŒHM, D. ECKERT, D. LAGATTUTA, M. JAUZAC & G LEWIS Joseph Allingham Cosmology from Home 5-16 July 2021

Goals

Goals:

- 1 Model the density distribution of a galaxy cluster
- 2 Understand the relationship between electron/gas density and dark matter density
- **3 NEW:** Model the electron distribution with lensing reconstruction

Lensing



Credits: NASA/ESA

Joseph Allingham

Data & Mass reconstruction

Data: Lensing: MUSE cube (multiple images of background galaxies), HST, and DES

X-ray: XMM-Newton

Objects: MACS J0242.5-2132: z = 0.313, 6 systems of multiple images, MACS J0949.8+1708: z = 0.383, 1 system of multiple images

Density profile: dual Pseudo Isothermal Elliptical Matter Distribution (dPIEMD):

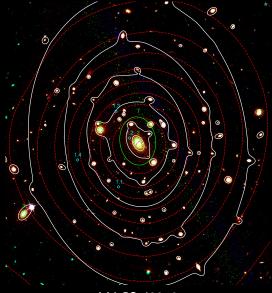
$$\rho(\mathbf{r}) = \rho_{0,m} \left\{ \left[1 + \left(\frac{\mathbf{r}}{\mathbf{r}_{cut}} \right)^2 \right] \left[1 + \left(\frac{\mathbf{r}}{\mathbf{r}_{core}} \right)^2 \right] \right\}^{-1}$$

Mass reconstruction

DM dominant contributor to lensing

Lenstool optimises image plane reconstruction with MCMC

> red: X-ray white: equipotentials



MACS J0949

Lensing results

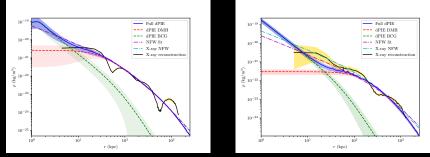
MACS J0242

$$\label{eq:RMS} \begin{split} \mathsf{RMS} &= 0.51 \text{ arcsec} \\ \mathsf{Relaxed} \end{split}$$

Classical cool-core cluster

MACS J0949

RMS = 0.08 arcsec Post-merger, still relaxing Not cool-core, not strongly disturbed



Excellent agreement with X-ray and NFW profile Article in preparation

Joseph AllingHAM Modelling electron clouds of galaxy clusters with gravitational lensing

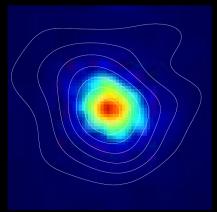
Modelling the electron cloud of clusters

Common assumption: electron cloud of galaxy clusters traces the dark matter halo (DMH).

Typically, e^- cloud of clusters are studied with X-ray and Sunyaev-Zel'dovich (SZ) effect and then compared to lensing.

SZ effect: Inverse Compton scattering of CMB photons on hot electrons in galaxy clusters

Broadens the spectral lines because of Doppler effect \implies shifts in the CMB frequency



Carlstrom et al. 2000

Joseph Allingham

Modelling the electron cloud of clusters

But we have a "direct" probe of DM \longrightarrow Reverse path: develop a model to reconstruct the e⁻ cloud and predict X-ray and SZ observations with only the lensing.

Physical interests:

- 1 Develop a model describing the thermodynamics, baryon and dark matter distribution
- 2 Relate the baryon distribution to that of DM
- 3 Test possible deviations to our estimations and challenge DM constraints

Classical electron number density

Usage: DMH represented by β profile on n_e and polytropic law on T_e :

$$n_e(r) = n_{e,0} \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-\frac{3}{2}\beta}$$
$$T_e(r) = T_{e,0} \left[\frac{n_e}{n_{\text{ref}}}\right]^{(\gamma-1)}$$

Literature $\{\beta; \gamma\} \sim \{0.7; 1.2\}$; r_c core radius \rightarrow provided by lensing dPIEMD potentials.

More complex models – derived from Vikhlinin et al. 2006 parametrisation – exist.

X-ray & SZ effect

X-ray surface brightness S_X :

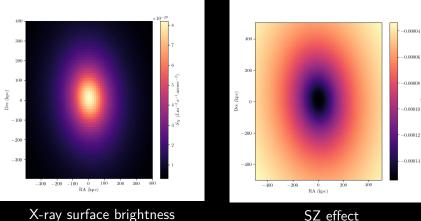
$$S_X = rac{1}{4\pi(1+z)^3} \int n_e^2 \Lambda(Z, T_e, \Delta E) \mathrm{d}I$$

Sunyaev-Zel'dovich effect:

$$\frac{\Delta T}{T_r} = \left[x \coth\left(\frac{x}{2}\right) - 4 \right] \int \frac{k_B T_e}{m_e c^2} \sigma_T n_e dI$$
with $x = \frac{h\nu}{k_B T_r}$.

Joseph Allingham Modelling electron clouds of galaxy clusters with gravitational lensing

An example



SZ effect

11/20

뉢

Joseph Allingham Modelling electron clouds of galaxy clusters with gravitational lensing

The importance of the gas fraction

To get access to the electron density normalisation through lensing, we need to know the gas fraction (local f_g cumulative F_g):

$$F_g(r) = \frac{\int_0^r \mathrm{d}s \ s^2 \rho_g(s)}{\int_0^r \mathrm{d}s \ s^2 \rho_m(s)} = \frac{M_g(< r)}{M_m(< r)}$$
$$f_g(r) = \frac{\rho_g}{\rho_m} = \frac{\mathrm{d}F_g}{\mathrm{d}r}(r)\frac{\int_0^r \mathrm{d}s \ s^2 \rho_m(s)}{r^2 \rho_m(r)} + F_g(r)$$

 ho_m total matter density (baryons + DM); ho_g gas density.

 $n_e(r) \propto f_g(r)
ho_m(r)$

Joseph ALLINGHAM Modelling electron clouds of galaxy clusters with gravitational lensing

Gas fraction Arctan model

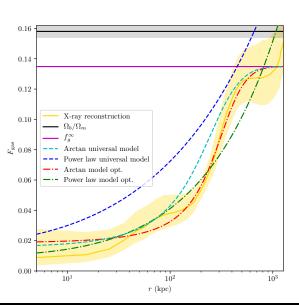
X-COP data & MACS J0242 and MACS J0949 X-ray analysis \implies First model of gas fraction distribution:

$$F_g(r) = a \arctan\left[\exprac{r-r_c}{r_f}
ight] + b$$

- all parameters found in data study or depend on lensing

 \rightarrow Arctan model converges for $r\rightarrow\infty,$ contrarily to power law model

Gas fraction models comparisons



14/20

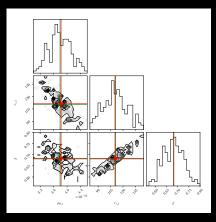
Joseph Allingham

Optimisation in the classical case

Models on $\{n_e; T_e\}$ and $f_g \implies$ prediction full X-ray and SZ effect

Fit model prediction to the X-ray data \rightarrow classical models: 3 parameters { $\rho_{0,m}$; r_c ; β }.

Double- β model proved to be just as efficient as simple- β \longrightarrow Validates hypothesis " n_e follows the DMH"



n_e , T_e , f_g and our lensing model converge!

Joseph ALLINGHAM Modelling electron clouds of galaxy clusters with gravitational lensing

Dominique Eckert's universal model of polytropic index

X-COP data \rightarrow universal expression of varying polytropic index:

$$\Gamma(n_e) = \Gamma_0 \left[1 + \Gamma_S \arctan\left(\frac{\ln(n_e/n_{\rm ref})}{\Gamma_T}\right) \right]$$

where all parameters Γ_0 , Γ_S , Γ_T , n_{ref} are known.

$$T = T_0(z) \left(\frac{n_e E(z)^{-2}}{n_{\rm ref}}\right)^{\Gamma(n_e)-1}$$

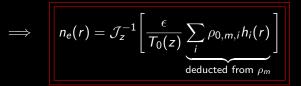
Paper in preparation

Joseph ALLINGHAM Modelling electron clouds of galaxy clusters with gravitational lensing

Full electron density calculation

Poisson equation (hydrostatic equation, hypothesis: virial theorem):

$$\vec{\nabla} \left[\frac{\vec{\nabla} \left(\frac{\rho_{g}(r)k_{B}T_{g}(r)}{\mu_{I}m_{P}} \right)}{\rho_{g}(r)} \right] = -4\pi G \rho_{m}(r)$$



analytically compute n_e from ρ_m !

Joseph AllingHAM Modelling electron clouds of galaxy clusters with gravitational lensing

For those who like maths

$$n_{e}(r) = \mathcal{J}_{z}^{-1} \left[\frac{\epsilon}{T_{0}(z)} \sum_{i} \rho_{0,m,i} h_{i}(r) \right]$$
$$\epsilon = -\frac{4\pi G \mu_{I} m_{P}}{k_{B}}$$
writing $\rho_{m}(r) = \sum_{i} \rho_{0,m,i} f_{i}(r)$
$$h_{i}(r) = \int ds \ s^{-2} \int dt \ t^{2} f_{i}(t)$$

and $T_0(z)$ an empirical relationship (Ghirardini et al. 2018) and

$$\mathcal{J}_{z}(n_{e}) = \int_{0}^{n_{e}} \frac{T_{g}(x)}{T_{0}(z)} \mathrm{d}\left[\ln\left(xT_{g}(x)\right)\right]$$

where \mathcal{J}_z^{-1} is numerically tabulated

Joseph ALLINGHAM Modelling electron clouds of galaxy clusters with gravitational lensing

Limitations

Only relaxed or relaxing clusters, not yet very perturbed geometries

Only two galaxy clusters so far

Assumptions on metallicity ($Z = 0.3 Z_{\odot}$), and on temperature normalisation

Conclusions

- 1 Original gas fraction models
- 2 Fully analytical derivation of the electron/gas density
- 3 Reasonable agreement between our results and the popular models in X-ray & SZ communities (β distribution and beyond)

Long term: Constrain dark matter models, and more notably IDM.

Two publications to come: lensing reconstruction and e^- clouds models optimised with X-ray.

Contact: joseph.allingham@sydney.edu.au 00000-0003-2718-8640