

Jingjing Shi 史晶晶 <u>arXiv:2104.12329</u>

(with Ken Osato, Toshiki Kurita, and Masahiro Takada)

AN OPTIMAL ESTIMATOR OF INTRINSIC ALIGNMENTS FOR STAR-FORMING GALAXIES

https://www.tng-project.org

 5.5
 6.2
 6.8
 7.5
 8

 Dark Matter Column Density [log M_{sun} kpc⁻²]

2

https://www.tng-project.org

Dark Matter Column Density [log M_{sun} kpc⁻²]

INTRINSIC ALIGNMENT – WHY IMPORTANT

 Contaminates Weak Lensing Cosmology (Hirata & Seljak 2004, Troxel+2015)

INTRINSIC ALIGNMENT – WHY IMPORTANT

- Contaminates Weak Lensing Cosmology (Hirata & Seljak 2004, Troxel+2015)
- Probe of cosmology: Primodial non-Gaussianity, BAO (Chisari+2013, Chisari+2016, Akitsu+2020)
- Constrains galaxy formation and evolution

Clustering -> isotropic PNG (s=0)

TIDAL ALIGNMENT MODEL

Linear alignment model

Intrinsic shear

$$\gamma^{I} = -\frac{C_{1}}{4\pi G} (\nabla_{x}^{2} - \nabla_{y}^{2}, 2\nabla_{x}\nabla_{y}) \mathcal{S}[\Psi_{P}]$$

Primordial potential

$$\Psi_P(\mathbf{k}) = -4\pi G \frac{\bar{\rho}(z)}{\bar{D}(z)} a^2 k^{-2} \delta_{lin}(\mathbf{k}),$$

Cross correlation of intrinsic shear and matter field

$$P_{\delta,\tilde{\gamma}^{I}}(k) = -\frac{C_{1}\bar{\rho}}{\bar{D}}a^{2}P_{\delta}^{lin}(k).$$

Non-linear alignment model

replace linear power spectrum by its non-linear one

Catelan+2001, Hirata & Seljak 2004, Bridle & King 2007

INTRINSIC ALIGNMENT – OBSERVATIONS

LRGs – clear IA signal shown by the correlation function between galaxy positions and intrinsic ellipticities

Okumura & Jing 2009, Blazek+2011

Mandelbaum+2011, Yao+2020

Blue star-forming galaxies – no clear IA signal detected so far

ELGS SURVEYS

PFS survey cosmology: use single tracer ([OII] emission line galaxies, i.e. ELGs) to map evolution of the large-scale structure of the Universe in a wide range of redshifts, 0.6 < z < 2.4, over 1400 deg² sky area covered also by the HSC image survey

DESI targets:

Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Baseline
	range	used	$\mathrm{per}\;\mathrm{deg}^2$	$per deg^2$	$per deg^2$	sample
LRG	0.4 - 1.0	r,z,W1	350	580	285	4.0 M
ELG	0.6 - 1.6	g,r,z	2400	1870	1220	17.1 M
QSO (tracers)	< 2.1	g,r,z,W1,W2	170	170	120	$1.7 \mathrm{M}$
QSO (Ly- α)	> 2.1	g,r,z,W1,W2	90	250	50	$0.7 {\rm M}$
Total in dark time			3010	2870	1675	23.6 M
BGS	0.05 - 0.4	r	700	700	700	9.8 M
Total in bright time			700	700	700	9.8 M

DESI Collaboration, 2016

? Is there an estimator that optimally extracts the IA signal surrounding the star-forming galaxies (i.e. ELGs)

ILLUSTRIS-TNG SIMULATION

https://www.tng-project.org

SELECTION OF ELGS IN TNG300

SFR ranked selected galaxies

roughly corresponds to

[OII] emission line strength selected galaxies

Gonzalez-Perez+2020; Osato & Okumura 2021, in prep

z	$\langle \log M_{\star} \rangle$	$\langle \log M_{\rm halo} \rangle$	$\langle SFR \rangle$	$f_{\rm cen}$
0.5	11.39	13.20	3.59	0.899
1.0	11.25	13.04	6.00	0.894
1.5	11.13	12.88	6.29	0.895
2.0	11.04	12.67	10.48	0.886

Shi+2021b

Ray-tracing simulation using Pégase.3 code

APERTURE SHAPE ESTIMATOR

APERTURE SHAPE ESTIMATOR

IA OF ELGS

ELLIPTICITIES OF ELGS

Light distribution follows the matter distribution

REDSHIFT EVOLUTION

Shi+2021b

Non-linear alignment model

$$P_{\delta E}(k,\mu) = -A_{\rm IA}C_1\rho_{\rm cr0}\frac{\Omega_{\rm m}}{D(z)}(1-\mu^2)P_{\delta\delta}(k,z)$$

Shi+2021b

z	$\langle \log M_{\star} \rangle$	$\langle \log M_{\rm halo} \rangle$	$\langle SFR \rangle$	$f_{ m cen}$	A_{IA}	σ_{ϵ}
0.5	11.39	13.20	3.59	0.899	15.39 ± 2.96	0.43
1.0	11.25	13.04	6.00	0.894	15.26 ± 2.89	0.41
1.5	11.13	12.88	6.29	0.895	12.86 ± 2.83	0.39
2.0	11.04	12.67	10.48	0.886	15.45 ± 2.84	0.40

