
Photometric redshifts and 
observational systematics on 

DES Y3 analyses 
Giulia Giannini 

&
Martín Rodríguez Monroy



The Dark Energy Survey (DES)

Image Credit: CosmoHub, Port d'Informació Científica (PIC)

● 570 Megapixel camera 
for the Blanco 4m 
telescope at the Cerro 
Tololo Inter-American 
Observatory in Chile

● Full survey 2013-2019 
(Y3 2013-16)

● Wide field: 5000 sq. 
deg. in 5 bands (grizY) 
~23 magnitude.

● DES Y3: Positions     
and shapes of > 100M 
galaxies.  
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Galaxy clustering and 3x2pt 

Three different correlation functions to maximise cosmological information and 
constraint systematic effects: 

● Cosmic shear,               : correlation of shapes with shapes 
●
● Galaxy clustering,               : correlation of positions with positions 
●
● Galaxy-galaxy lensing,               : correlation of positions with shapes 

We use two different samples of galaxies: 
● Source galaxies             galaxy shapes 
● Lens galaxies                 galaxy positions 
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DES Y3 lens samples
RedMaGiC

● Red luminous galaxies with high quality 
photometric redshift estimates 

● 0.15 < z < 0.90
● 3 million galaxies

● Bright magnitude limits at each tomographic bin 
imposed to reduce photo-z error

● Sample selection is function of redshifts 
from the photometric code DNF: 

● mag_i < 4 * z + 18
● mag_i > 17.5

● 6 tomographic bins:      
● Bin edges optimised for the 

cosmological analysis 

MagLim (fiducial Y3 sample) 

larger N density (11 million galaxies)
lower S/N
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Main sources of systematic errors in galaxy clustering 

Photometric redshift calibration Observing conditions and astrophysical 
sources 

Astrophysical sources: 
● Dust extinction 
● Stellar density 

Observing conditions: 
● Seeing 
● Exposure time 
● Sky brightness 
● Depth, … 
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Systematic affecting n(z) higher moments: 
● Sample variance
● Biases in the redshift of spec-z and 

high quality photo-z samples
● Redshift dependence of the 

galaxy-matter bias
● Small number of bands, ...
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Survey property (SP) maps 

● HEALPix maps that track the spatial variations of the survey properties 
● We have 107 of them! 

○ Too many maps can lead to overcorrection 
○ Too few maps can lead to undercorrection 
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Survey property (SP) maps 

● HEALPix maps that track the spatial variations of the survey properties 
● We have 107 of them! 

○ Too many maps can lead to overcorrection 
○ Too few maps can lead to undercorrection 

● Dimensionality reduction: 
○ Pearson’s correlation matrices 
○ Principal component analysis (PCA) 

● We select the 50 first PC maps: 
○ Explain ~98% total variance 
○ Our decontamination methods perform a 

data-driven selection of the contaminant 
maps 
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Correction methods 

We employ two methods to mitigate the impact from SP maps: 

● Iterative Systematics Decontamination (ISD): 
○ Iterative method that evaluates the significance of each SP map and correct for them 

stepwise 
○ Computes the relation between galaxy number density and SP map value on the sky: 1D 

relation 
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Correction methods 

We employ two methods to mitigate the impact from SP maps: 

● Iterative Systematics Decontamination (ISD): 
○ Iterative method that evaluates the significance of each SP map and correct for them 

stepwise 
○ Computes the relation between galaxy number density and SP map value on the sky: 1D 

relation 
● Elastic Net (ENet): 

○ Multilinear fit to all SP maps performing a elastic net regularisation = ridge + LASSO 
regularisation 

● Both methods produce weight maps that are applied to the data 
● ISD is our fiducial method 
● We use ENet as 

○ robustness test of ISD (validating on log-normal mocks) 
○ an estimator of the systematic contribution to the covariance matrix 10



Iterative Systematics Decontamination (ISD) 

 

Apply the weight map 
to our galaxy sample

● Iterative process: 
○ Fix a threshold for 1D contamination 
○ 1 Define 1D significance by evaluating against log-normal mocks 

2 3
Identify most 
significant SP 
map

4

○  5 Re-evaluate significance of SPs until process converges
○ This method has been applied to the DES Y3 lens galaxy samples, MagLim and 

redMaGiC, and to the BAO sample 11

redMaGiC redMaGiC
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Validation and robustness of the correction 

We check the potential biases introduced by ISD and we account for them in the 
covariance matrix: 

● False correction bias: chance 
correlations. Use uncontaminated  
mocks 
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Validation and robustness of the correction 

We check the potential biases introduced by ISD and we account for them in the 
covariance matrix: 

● False correction bias 
● Residual systematic bias: uncorrected 

contamination. Use ENet contaminated 
mocks and decontaminate with ISD 
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Validation and robustness of the correction 

We check the potential biases introduced by ISD and we account for them in the 
covariance matrix: 

● False correction bias 
● Residual systematic bias 
● Modifications to the covariance matrix: systematic uncertainty from: 

○ choice of method (subdominant) 
○ bias from contaminated mocks 
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Validation and robustness of the correction 

We check the potential biases introduced by ISD and we account for them in the 
covariance matrix: 

● False correction bias 
● Residual systematic bias 
● Modifications to the covariance matrix 
● Impact on parameter estimation: effect of 

the decontamination on the estimated 
parameters 
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Validation and robustness of the correction 

We check the potential biases introduced by ISD and we account for them in the 
covariance matrix: 

● False correction bias 
● Residual systematic bias 
● Modifications to the covariance matrix 
● Impact on parameter estimation 
● Additional robustness tests: 

alternative configurations of ISD, 
ENet and alternative methods 
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Galaxy clustering results 
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Galaxy clustering results 
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Internal consistency

Two correlated cosmological probes:

1. Cosmic shear (blue)
2. Galaxy clustering and tangential 

shear (orange)

We find consistency between them.

Cosmic shear most sensitive to 
clustering amplitude.

Galaxy clustering and tangential shear 
more sensitive to total matter density.
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3x2pt results

We combine these into the 3x2pt probe 
of large-scale structure.

A factor of 2.1 improvement in 
signal-to-noise from DES Year 1.

In ΛCDM:

In wCDM:
21
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Main sources of systematic errors in galaxy clustering 

Photometric redshift calibration Observing conditions and astrophysical 
sources 

Astrophysical sources: 
● Dust extinction 
● Stellar density 

Observing conditions: 
● Seeing 
● Exposure time 
● Sky brightness 
● Depth, … 
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Systematic affecting n(z) higher moments: 
● Sample variance
● Type-redshift degeneracy
● Redshift dependence of the 

galaxy-matter bias
● Small number of bands, ...



MagLim redshift distributions

● Fiducial DES Y3 results: DNF-estimated n(z), shifted and stretched to match cross-correlations 
measurements in a restricted redshift range, marginalising over the shift and stretch parameters only

● In this work, we apply a similar methodology as the one used for the DES Y3 source sample, which 
combines cross-correlations and phenotypic calibration to allow a marginalisation over the 
n(z) full shape, and we compare simulated chains results with the fiducial methodology.

While redMaGiC consists of red galaxies with high 
S/N, MagLim includes all galaxies brighter than a 
magnitude threshold, function of DNF redshifts

        larger N density 

        noisier than redMaGiC
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It is necessary to further calibrate 
its redshift distributions



Redshift calibration pipeline
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Redshift calibration pipeline
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Redshift calibration pipeline

● In the griz bands used to target the whole wide field, redshifted SEDs of two types of galaxies 
are indistinguishable 

○ Type-redshift degeneracy is the fundamental cause of uncertainty in redshift calibration
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Redshift calibration pipeline
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● In the griz bands used to target the whole wide field, redshifted SEDs of two types of galaxies 
are indistinguishable 

○ Type-redshift degeneracy is the fundamental cause of uncertainty in redshift calibration

● Adding extra bands from DES or other survey's deep fields helps to break said degeneracy 
● Extra bands are available only for a subset of the wide field galaxies



Self-Organizing Maps
● Self Organising Map (SOM) is a unsupervised artificial neural network that produces a discretized and 

low-dimensional representation of the input space 

● In the SOMPZ method SOMs are used to classify galaxies in phenotypes according to their properties

● Accurate phenotype classification is possible including the extra bands available in the deep fields
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SOMPZ methodology
● Galaxies from wide and deep fields are grouped into phenotypes using SOMs 
● Redshifts in the deep fields are validated through high precision redshift samples
● Redshifts are assigned back to the wide field by mapping the two SOMs through a transfer function 
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Balrog is a code creating noisy replicas 
of deep field galaxies by injecting them 
many times into real DES wide field 
images and processing them through 
the whole pipeline



SOMPZ Uncertainties

● Sample Variance in the Deep Fields: main 
uncertainty, caused by the limited area of the 
deep fields;

● Shot noise: induced by the limited size of the 
deep fields sample;

● Inherent SOMPZ Method uncertainty: due to 
discretising a continuous color space;

● Redshift Sample Biases: introduced when 
using redshifts originating from different 
photometric or spectroscopic surveys;

● Photometric Calibration: the deep fields 
have different zeropoint uncertainties.
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The product of this calibration is a set of n(z) realisations whose overall variance 
span all the uncertainties included in our SOMPZ methodology



Redshift calibration pipeline
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Clustering Redshifts (WZ)
Clustering redshifts method allows to estimate the redshift distribution of a target sample (“unknown”) by 
exploiting the cross-correlation signal with a spatially overlapping “reference” sample with good redshifts

32

1. Divide reference sample with 
spec-z or high quality photo-z 
into small redshift bins

2. Measure the cross-correlation 
signal with the given science 
sample



WZ systematic uncertainties

We forward model the full clustering signal, using as n(z) each SOMPZ realisation
The model is multiplied by Sys(z,s), a smooth function whose form has been chosen in a way to be 
flexible enough to fully describe the systematic uncertainties:

● Unknown bias evolution systematic: we ignore the true redshift evolution of the 
galaxy-matter bias of the MagLim sample 𝑏u(𝑧)

● Methodology systematic: failure in the linear-bias model at small scales
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WZ likelihood

Prior on the nuisance parameters s 
of the Sys(z, s) systematic function

Prior on p = [𝑏u ,αu] (the 𝑏u appearing in the 
magnification term is not assumed equal to 
the 𝑏u that multiplies 𝑤DM )

● We assign a likelihood to the measured cross-correlation signal wur (zi ) in data given a proposal for 
the redshift distributions n(z), assuming the previously shown model

● The covariance matrix for the data (shot noise and sample variance) is computed from simulated 
data with jackknife

SOMPZ n(z)
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Redshift calibration pipeline
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Combination

● We sample the final n(z) from a joint likelihood 
using an Hamiltonian Monte Carlo method

● WZ is able to improve constraints on the SOMPZ 
shape and to produce a smoother n(z) 
distribution

● This is particularly important for lenses since 
w(Θ) and γt are more sensitive to n(z) higher 
moments
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Comparison with DNF

● Good compatibility with the fiducial 
redshift estimate for MagLim 

● SOMPZ+WZ provides a more 
accurate estimate, especially on 
the tails 
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BIN 1 BIN 2 BIN 3 BIN 4 BIN 5 BIN 6

MEAN
SOMPZ+WZ 0.309 0.451 0.617 0.762 0.883 0.967

DNF 0.291 0.422 0.615 0.761 0.887 0.968

WIDTH
SOMPZ+WZ 0.077 0.080 0.057 0.066 0.067 0.089

DNF 0.078 0.094 0.055 0.062 0.075 0.080
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Simulated datavectors
We simulated a potentially realistic scenario, 
where the 'true' n(z) differs slightly from the 
SOMPZ+WZ n(z).
We compare:

● marginalisation over a shift on the mean 
and a stretch on the width of the average 
SOMPZ+WZ realisation

● full-shape marginalisation: at each step 
one realisation is sampled out of the 
ensemble thanks to the Hyperrank code

We obtained some slight differences at the level 
of 0.5σ, and less correlated biases 

This is driven by the uncertainties in the higher 
order moments of the n(z). We believe that for 
our modelling of the uncertainties hyperrank is 
the correct approach, as we know it recovers 
unbiased parameters on tests on simulations



Simulated datavectors
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Conclusions
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● As the area and depth increase, the 
statistical errors are dramatically reduced 

● This means that the correct characterisation 
and mitigation of systematic effects is 
becoming an ever more critical task for 
photometric surveys

● In this talk we have presented newly 
developed techniques that improve our 
treatment of systematics tied with 
photometric redshift calibration and the 
correction of observational effects, two of 
the most challenging sources of error for 
current surveys as DES, and for the next 
generation ones, as LSST or Euclid 


