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Slow-roll Inflation

* Inflation: period of early acceleration

* Inflaton ¢ rolls down its potential.
Approximate de Sitter expansion:
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« Curvature perturbations ¢ freeze outside of the horizon for i # 0
P,
hij = a® [e*6i; + i), (G¢p)' = k_g

« At CMB scales the typical fluctuations are
P = H?/(2eM3,) ~ 10719 ( ~107°

Power spectrum



Perturbation theory

Statistics of ¢ is almost perfectly Gaussian,
with corrections characterized by (¢*), (¢*)

« Corrections to Gaussianity for ¢ ~ Pl/2

(typical fluctuations)
(C )
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(Planck and LLS bounds) < 1073

« Inflationary correlators are thus reliably computed in perturbation theory:
(in-in formalism)
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Why going beyond PT

Gaussian
Non-Gaussian

« PT computes corrections close to the
peak of the probability distribution P(¢)

It breaks down on the tails fn1.¢ ~ 1
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P(¢) ~ exp _;?C+%C3+%C4+...
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Corrections depend on the size of ¢

« This regime can be relevant for the abundance of rare objects:

Primordial Black Holes, CMB spots ecc.. o
Relevant for models of inflation

BH mass fraction o with large NGs, such as k-inflation.
at formation B(M) — / P(C)dC . G~ In slow-roll instead

I~ O(e,n) <« 1
c 5



How to go beyond PT

The tail of the distribution is amenable to a semiclassical calculation

» For h — 0 fluctuations go to zero: intuitively this limit describes unlikely events

Co ()
T[Go(7)] = / DS s[> 1

BD
Wavefunction of the Universe |¥[(][?= P(¢)

» This is the semiclassical regime

T [Co(Z)] ~ eSleal/n

« We can see this explicitly in an example in QM: tails of the wavefunction cannot be
described in PT



Semiclassical wavefunction in QM

» Consider a particle with position x(¢) in a potential well with potential V (z)
We are interested in the ground state wavefunction Wo(x )

« After rotating to Euclidean time ¢t — —i7, the ground state can be written as a path
integral (T =71 — 1)
x(Tf)=xy
Wo (xp) UF (2;) e o = lim Da(7)e Sel (/R

x(7i)=x;

Selects the trajectory with E =0

» For large =y we are on a tail of the wavefunction. The action is large: semiclassical
limit holds

Tf 1
Uy, (:L'f) \I’E‘; (sz) e~ BoT , o—Se[za(r)]/h SE = / [§m$2 + V((E)] dr
« Wavefunction can be obtained from a “classical” trajectory connecting the initial and
final point in an inverted potential



Wavefunction for an anharmonic oscillator

Small parameter

1 /x\2 r\4 B
« Example: V(z) = Aw | = (—) + A (—) , d=+h/mw Viz)
2 \d d
(zs;7:)
4 > T
» The semiclassical parameter 7% = 2\z%/d” can \
become large, so PT breaks down when
% ~ O(1) .
TpiTy

 Because of energy conservation (E = 0) the
action is easy to find

Sglz(r)] 1 [T 1 5\ 3/2 . .
= — = — — Non-perturbat ltin A
; h/ﬂ. ma? dr & [(1—|—:1: ) 1} on-perturbative result in
» The wavefunction has the form One-loop correction
1
Uy (z) = Nexp {_6—)\ [(1 + 3—72)3/2 _ 1} + /() + Ag(Z) + ... }

. TWO loops 8



Wavefunction for Inflation

For Inflation, we consider a model where nonlinearities are dominated by a single term

S_/d3$d?7 1 [C’Q_(8C)2:| 4 )\Cfll
2772PC 4!Pg2 [Senatore, Zaldarriaga, "11]

Standard perturbation theory: expansionin A < 1

. . . = 1 1/2
The (classical) nonlinear parameter is ¢o = )\I/QCO/PC/ Value of ¢ at late times

(analogous to z = 2Az%/d* in QM)

Semiclassical expansion: expansion in A with o arbitrary.

The on-shell action thus scales as



Wavefunction for Inflation

A= AE/P;

« The EoM in Euclidean (1 — —iT) is — =0

— A =100

— A =200

2 A
C” L ;CI 4 v2C+ ETZC’QCJ! — 0 o

¢/Go

« We solve the EoM numerically for
different BCs

C(Ti: f) =0, C(Tfa f) - CO('f)

Large value
« We also need to fix the late-time

configuration as a function of Z

« We choose a gaussian profile at late
times

Co() = Coe
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Wavefunction for Inflation

« After obtaining the solution, we can evaluate the Euclidean action

« The free action contains divergences at late times that we need to subtract:
Divergent for 7t — 0 [Maldacena, ‘03]

- = (1 — k7)ehm Corresponds to a phase in Lorentzian
Ca(k, ) = Co(k) (1 — krg) e (irrelevant for the probability distribution)
1 3k 1 - - B3k 1 k2 - -
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E QPC / (271-)3 TEC»I( T) Cl( T) . / (271.)3 2PC (Tf + + ) CU( )CU( )
» In the nonlinear case, after subtracting the gt
divergent part, we can numerically evaluate L 10'  dation
the action and get
I z3/2 i '
G~ — = 104
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Conclusions and future directions

Conclusions:
» We studied the tails of the probability distribution for ¢ at late times

* In this regime usual PT breaks down. However, a semiclassical approach is
possible

» We studied numerically this problem in a simple model by first rotating to
Euclidean time

Future directions;

 This method can be applied to different models with large NGs (k-inflation,
DBI, ecc..)

« More systematic study of PBH formation in these models
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Thank you for listening
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