ETH zürich

Reconstructing the neutrino mass as a function of redshift

Christiane S. Lorenz (ETH Zürich) In collaboration with Lena Funcke, Matthias Löffler and Erminia Calabrese Based on arXiv:2102.13618

Cosmology from Home Conference, July 2021

Neutrino mass bounds from cosmology

Impact of Σm_{ν} on the matter power spectrum:

Image credit: Allison et al. (2015), arXiv:1509.07471

Good reviews on neutrino cosmology: Lesgourgues and Pastor (2006); Lesgourgues et al. (2013); Lattanzi and Gerbino (2017).

C. S. Lorenz

Neutrino mass bounds from cosmology

Less known: Impact of Σm_{ν} on the CMB

Image credit: Hou et al. (2014), arXiv:1212.6267

Good reviews on neutrino cosmology: Lesgourgues and Pastor (2006); Lesgourgues et al. (2013); Lattanzi and Gerbino (2017).

Neutrino mass bounds from cosmology

Less known: Impact of Σm_{ν} on the CMB

	Model	95% CL (eV)	Ref.
CMB alone			
Pl18[TT+lowE]	$\Lambda CDM + \sum m_{\nu}$	< 0.54	[16]
Pl18[TT,TE,EE+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.26	[16]
CMB + probes of background evolution			
Pl18[TT+lowE] + BAO	$\Lambda CDM + \sum m_{\nu}$	< 0.16	[16]
Pl18[TT,TE,EE+lowE] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[16]
Pl18[TT,TE,EE+lowE]+BAO	$\Lambda \text{CDM} + \sum m_{\nu} + 5$ params.	< 0.515	[18]
CMB + LSS			
Pl18[TT+lowE+lensing]	$\Lambda CDM + \sum m_{\nu}$	< 0.44	[16]
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda CDM + \sum m_{\nu}$	< 0.24	[16]
CMB + probes of background evolution	+ LSS		
Pl18[TT+lowE+lensing] + BAO	$\Lambda CDM + \sum m_{\nu}$	< 0.13	[16]
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.12	[16]
Pl18[TT,TE,EE+lowE+lensing] + BAO+Pan	theon $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.11	[16]

Table 26.2: Summary of $\sum m_{\nu}$ constraints.

Image credit: Review of Particle Physics, 2021

Neutrino mass parameter space

Image credit: Abazajian et al. (CMB Stage 4 Collaboration) (2019).

 Σm_{ν} is constrained to be ...

[1] Aghanim et al. (Planck Collaboration) (2018).

[1] Aghanim et al. (Planck Collaboration) (2018).

[1] Aghanim et al. (Planck Collaboration) (2018). [2] Choudhury and Hannestad (2020).

Σm_{ν} is constrained	d to be	
$\Sigma m_ u < 120$ meV	ACDM (Planck 2018 CMB + BAO)	[1]
$\Sigma m_ u < 120 \; { m meV}$	$\Lambda CDM + N_{eff}$ (Planck 2018 CMB + BAO)	[1]
$\Sigma m_ u <$ 290 meV	Λ CDM with $w(a) = w_0 + w_a(1 - a)$ (Planck 2018 CMB + BAO + SN)	[2]
$\Sigma m_ u < 0.9 \; { m eV}$	Λ CDM + ν decays (Planck 2015 CMB + BAO + SN)	[3]

Aghanim et al. (Planck Collaboration) (2018). [2] Choudhury and Hannestad (2020).
 Chacko et al. (2019).

Σm_{ν} is constrained	to be	
$\Sigma m_ u < 120$ meV	ACDM (Planck 2018 CMB + BAO)	[1]
$\Sigma m_ u < 120$ meV	$\Lambda CDM + N_{eff}$ (Planck 2018 CMB + BAO)	[1]
$\Sigma m_ u < 290$ meV	Λ CDM with $w(a) = w_0 + w_a(1 - a)$ (Planck 2018 CMB + BAO + SN)	[2]
$\Sigma m_ u < 0.9$ eV	$\begin{array}{l} \Lambda \textbf{CDM} + \nu \text{ decays} \\ (Planck 2015 \text{ CMB} + \text{BAO} + \text{SN}) \end{array}$	[3]
$\Sigma m_ u <$ 4.8 eV	Λ CDM+ $m_{\nu}(z)$ from supercooled phase transition in relic neutrino sector (Planck 2015 CMB + BAO + SN)	[4]

Aghanim et al. (Planck Collaboration) (2018). [2] Choudhury and Hannestad (2020).
 Chacko et al. (2019). [4] CSL et al. (2018).

Hints for high neutrino masses at low redshifts

KiDS-1000 Cosmology: constraints beyond flat ΔCDM

Tülman Tröster¹⁺, Marika Argari¹, Chris Blake², Matteo Cataneo¹, Catherine Heymans¹⁻³, Hendrik Hildebrand², Benjamin Joachimi⁴, Chieh-An Lin¹, Ariel G. Sánchez², Angus H. Wrigh³, Maciej Biltck⁴, Benjamin Bose², Martin Crocce^{4,3}, Andrej Dvornik³, Thomas Erben¹⁰, Benjamin Giblini, Karf Glazebrook², Henk Hockstra¹, Shahab Joudak¹², Paruh Rannayand¹³, Fabian Köhlinger³, Korrad Kuijken¹¹, Chris Lidman^{14, 15}, Lucas Lombriser², Alexander Mead⁴⁰, David Partison⁷, Hanay xuna Shan^{14, 15}, Christis Molf^{41, 15}, Lucas Lombriser², Alexander Mead⁴⁰, David Partison⁷, Hanay xuna Shan^{14, 15}, Christis Molf^{41, 15}, Lucas Lombriser², Alexander Mead⁴⁰, David Partison⁷, Hanay xuna Shan^{14, 15}, Christis Molf^{41, 15}, Lucas Lombriser², Alexander Mead⁴⁰, David Partison⁷, Hanay xuna Shan^{14, 15}, Christis Molf^{41, 15}, Lucas Lombriser², Alexander Mead⁴⁰, David Partison⁷, Hanay xuna Shan^{14, 15}, Christis Molf^{41, 15}, Lucas Lombriser², Alexander Mead⁴⁰, David Partison⁷, Hanay xuna Shan^{14, 15}, Christis Molf^{41, 15}, Lucas Lombriser², Alexander Mead⁴¹, David Partison⁷, Hanay Xuna Shan^{15, 15}, Christis Molf^{41, 15}, Lucas Lombriser¹, Alexander Mead⁴¹, David Partison⁷, Hanay Xuna Shan^{15, 15}, Christis Molf^{41, 15}, Lucas Lombriser¹, Alexander Mead⁴¹, David Partison⁷, Hanay Xuna Shan^{15, 15}, Christis Molf^{41, 15}, Lucas Lombriser¹, Alexander Mead⁴¹, David Partison⁷, Hanay Xuna Shan^{15, 15}, Christis Molf^{41, 15}, Lucas Lombriser¹, Alexander Mead⁴¹, David Partison⁷, Hanay Xuna Shan^{15, 15}, Christis Molf^{41, 15}, Lucas Lombriser¹, Alexander Mead^{41, 15}, Alexan Shan^{15, 15}, Christis Martison¹⁵, Hana Xuna Shan^{15, 15}, Christis Molf^{41, 15}, Lucas Lombriser¹⁵, Alexan Lucas Lucas

 $\nu \Lambda CDM$

Image credit: Tröster et al. (2021), arXiv:2010.16416

C. S. Lorenz

Reconstructing cosmological parameters

Several examples in the literature: H(z), $w_{de}(z)$, primordial power spectrum...

Image credit: Bernal et al. (2016), arXiv:1607.05617

Reconstructing $\sum m_{\nu}(z)$

First attempt: Binned reconstruction

CSL et al. (2021), arXiv:2102.13618

Improving the reconstruction method

Questions

- ▶ Why is the constraint in the last redshift bin so tight?
- At which redshift does the sensitivity of $\sum m_{\nu}(z)$ decrease?
- ► Can we use our results to constrain extended neutrino models?

CSL et al. (2021), arXiv:2102.13618

Why is the constraint in the last redshift bin so tight?

Image credit: Hou et al. (2014), arXiv:1212.6267

At which redshift does the sensitivity of $\sum m_{\nu}(z)$ decrease?

First step: Wider redshift bins

CSL et al. (2021), arXiv:2102.13618

At which redshift does the sensitivity of $\sum m_{\nu}(z)$ decrease?

Second step: Reconstruction with linear splines and variable knots

 \rightarrow Two new parameters: The knots (change points) z_1 and z_2

CSL et al. (2021), arXiv:2102.13618

C. S. Lorenz

Can we constrain extended neutrino models?

Reconstruction results can be converted into limit for neutrino decay models: $\sum m_{\nu} < 0.21~{\rm eV}$

Consistency test 1: Neutrino decay prior

Prior requirement with $\sum m_{
u,z_i} \leq \sum m_{
u,z_j}$ for $z_i \leq z_j$

 \longrightarrow Limit for neutrino decay models: $\sum m_{
u} < 0.25$ eV

CSL et al. (2021), arXiv:2102.13618

Consistency test 2: Dark energy and neutrino masses

CSL et al. (2021), arXiv:2102.13618

Reconstructing the neutrino mass as a function of redshift

Summary

- Current cosmological data constrain $\sum m_{\nu}$ tightly at high redshifts
- Higher neutrino masses are still allowed at low redshifts ($z \leq 3$)

$$\sum m_
u(z=0) < 1.46$$
 eV $\sum m_
u(z=1100) < 0.53$ eV

 Neutrino decay models can no longer explain a potential detection of absolute neutrino masses by KATRIN

Thank you for your attention!

Open questions

- ▶ Why are high neutrino masses allowed at low redshifts?
- ▶ Why is the neutrino mass limit measured by *Planck* so low?
- ► Which models could explain discrepancies between cosmological and terrestrial neutrino mass measurements?

Image credit: Aghanim et al. (Planck Collaboration) (2018); M. Aker et al. (KATRIN Collaboration) (2021).