Detecting new forces in the gravitational wave background

Benjamin V. Lehmann [blehmann@ucsc.edu]
+Jeff A. Dror, Hiren H. Patel, \& Stefano Profumo

SCIPP
SANTA CRUZ INSTITUTB for PARTICLE PHYSICS UC SANTA CRUZ

The era of gravitational waves

This talk in one slide

This talk in one slide

1. SMBH GW background is a guaranteed discovery

This talk in one slide

1. SMBH GW background is a guaranteed discovery
2. Long range forces can detectably modify spectrum

This talk in one slide

1. SMBH GW background is a guaranteed discovery
2. Long range forces can detectably modify spectrum
3. SMBH GWs potentially probe many BSM scenarios

The stochastic GW background

5
6
J. A. Dror, BVL, H. H. Patel, S. Profumo (2105.04559)

The stochastic GW background

J. A. Dror, BVL, H. H. Patel, S. Profumo (2105.04559)

The stochastic GW background

J. A. Dror, BVL, H. H. Patel, S. Profumo (2105.04559)

The stochastic GW background

3
J. A. Dror, BVL, H. H. Patel, S. Profumo (2105.04559)

Stochastic background spectrum

4 J. A. Dror, BVL, H. H. Patel, S. Profumo (2105.04559)

Stochastic background spectrum

4 J. A. Dror, BVL, H. H. Patel, S. Profumo (2105.04559)

Stochastic background spectrum

Stochastic background spectrum

Why is the index $-2 / 3 ?$

Gravitational waves drive the evolution of the binary

Why is the index $-2 / 3 ?$

Gravitational waves drive the evolution of the binary

$$
\frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right)
$$

Why is the index $-2 / 3 ?$

Gravitational waves drive the evolution of the binary

$$
\frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right)
$$

Why is the index $-2 / 3 ?$

Gravitational waves drive the evolution of the binary

$$
\frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} \stackrel{2 f_{\mathrm{orbit}}}{\stackrel{\downarrow}{\mathrm{GW}}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right)
$$

Why is the index $-2 / 3 ?$

Gravitational waves drive the evolution of the binary

$$
\begin{gathered}
\stackrel{2 f_{\text {orbit }}}{\frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}^{\downarrow}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right)} \\
f_{\text {orbit }}(r)=\left(\frac{G\left(M_{1}+M_{2}\right)}{4 \pi^{2} r^{3}}\right)^{1 / 2} \\
\text { (Kepler's third law) }
\end{gathered}
$$

Why is the index $-2 / 3 ?$

Gravitational waves drive the evolution of the binary

$$
\begin{gathered}
\frac{2 f_{\text {orbit }}}{\stackrel{\downarrow}{\mathrm{d} E_{\mathrm{GW}}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right) \\
f_{\text {orbit }}(r)=\left(\frac{G\left(M_{1}+M_{2}\right)}{4 \pi^{2} r^{3}}\right)^{1 / 2} \\
\text { (Kepler's third law) } \\
\frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}} \propto f^{-1 / 3} \Longrightarrow \frac{\mathrm{~d} h_{c}}{\mathrm{~d} f_{\mathrm{GW}}} \propto f^{-2 / 3} \\
{[\text { Phinney, 2001] }}
\end{gathered}
$$

Why is the index $-2 / 3 ?$

Gravitational waves drive the evolution of the binary

$$
\begin{gathered}
\stackrel{2 f_{\text {orbit }}}{\stackrel{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right)} \\
f_{\text {orbit }}(r)=\left(\frac{G\left(M_{1}+M_{2}\right)}{4 \pi^{2} r^{3}}\right)^{1 / 2} \\
\text { (Kepler's third law) }
\end{gathered}
$$

New physics can break this prediction

Assumptions are made to be broken

Assumptions are made to be broken

(1) $f \leftrightarrow r$ relation

Kepler's law

Assumptions are made to be broken

(1) $f \leftrightarrow r$ relation Kepler's law
(2) All energy loss is gravitational

Benchmark model

Additional dynamics spoil the $-2 / 3$

Benchmark model

Additional dynamics spoil the $-2 / 3$

Toy model: charge BHs* under a new long-range force

Benchmark model

Additional dynamics spoil the $-2 / 3$
Toy model: charge BHs* under a new long-range force *or their surroundings

Benchmark model

Additional dynamics spoil the $-2 / 3$

Toy model: charge BHs* under a new long-range force *or their surroundings
Q_{2}

Benchmark model

Additional dynamics spoil the $-2 / 3$
Toy model: charge BHs* under a new long-range force *or their surroundings
(1) New force changes Kepler's law

Benchmark model

Additional dynamics spoil the $-2 / 3$
Toy model: charge BHs* under a new long-range force *or their surroundings

1 New force changes Kepler's law
2 New radiation takes energy
Q_{2}

Benchmark model

Additional dynamics spoil the $-2 / 3$
Toy model: charge BHs* under a new long-range force *or their surroundings
(1) New force changes Kepler's law

2 New radiation takes energy

$\underline{\text { Charge parameters }}$

$$
\underbrace{\alpha=\frac{Q_{1} Q_{2}}{G M_{1} M_{2}}}_{\text {Force }} \quad \underbrace{\gamma^{2}=\frac{1}{G}\left(\frac{Q_{1}}{M_{1}}-\frac{Q_{2}}{M_{2}}\right)^{2}}_{\text {Radiation }}
$$

Whence charge?

Whence charge?

(1) Particle production in SMBH environment

Whence charge?

1 Particle production in SMBH environment
2 Accumulation / accretion of new charge

Whence charge?

1 Particle production in SMBH environment
2 Accumulation / accretion of new charge
3 Charge separation by magnetic fields

Whence charge?

(1) Particle production in SMBH environment

2 Accumulation / accretion of new charge
3 Charge separation by magnetic fields
(4) Superradiant particle production

Whence charge?

(1) Particle production in SMBH environment

2 Accumulation / accretion of new charge
3 Charge separation by magnetic fields
(4) Superradiant particle production etc.

Whence charge?

(1) Particle production in SMBH environment

2 Accumulation / accretion of new charge
(3) Charge separation by magnetic fields
(4) Superradiant particle production etc.

Any of these could signal new fundamental physics

Whence charge?

(1) Particle production in SMBH environment

2 Accumulation / accretion of new charge
(3) Charge separation by magnetic fields
(4) Superradiant particle production etc.

Any of these could signal new fundamental physics

Toy model assumption:
charge is pointlike relative to binary separation
J. A. Dror, BVL, H. H. Patel, S. Profumo (2105.04559)

Modified single-source spectrum

New force and radiation modify the spectrum

Modified single-source spectrum

New force and radiation modify the spectrum

$$
\frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right) \underbrace{\frac{P_{\mathrm{GW}}}{P_{\mathrm{GW}}+P_{\text {new }}}}_{\text {radiation }}
$$

Modified single-source spectrum

New force and radiation modify the spectrum

$$
\begin{gathered}
\frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right) \underbrace{\frac{P_{\mathrm{GW}}}{P_{\mathrm{GW}}+P_{\mathrm{new}}}}_{\text {radiation }} \\
\text { ator mass } \\
F=\frac{G M_{1} M_{2}}{r^{2}}(1-\underbrace{\alpha e^{-m r}(1+m r)}_{\text {new force }})
\end{gathered}
$$

Modified single-source spectrum

New force and radiation modify the spectrum

$$
\begin{aligned}
& \frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{GW}}}=-\pi^{2} \mu r^{2} f_{\mathrm{GW}}\left(\frac{2 f_{\mathrm{GW}}}{r} \frac{\mathrm{~d} r}{\mathrm{~d} f_{\mathrm{GW}}}+1\right) \underbrace{\frac{P_{\mathrm{GW}}}{P_{\mathrm{GW}}+P_{\mathrm{new}}}}_{\text {radiation }} \\
& \text { ator mass } \\
& \mathrm{t}
\end{aligned}
$$

$$
P_{\text {new }}=\frac{1}{3} G \gamma^{2} \mu^{2} r^{2} \omega^{4} \operatorname{Re}\left[\sqrt{1-\frac{m^{2}}{\omega^{2}}}\right] \begin{cases}\left(1-\frac{m^{2}}{2 \omega^{2}}\right) & \text { (scalar) } \\ 2\left(1+\frac{m^{2}}{2 \omega^{2}}\right) & \text { (vector) }\end{cases}
$$

Modifying the force law $(\alpha \neq 0)$

New dipole radiation $(\gamma \neq 0)$

New dipole radiation $(\gamma \neq 0)$

From single sources to h_{c}

$$
h_{c}^{2}(f)=\int \mathrm{d} z \mathrm{~d} M_{1} \mathrm{~d} M_{2} \frac{\mathrm{~d} n_{\mathrm{G}}}{\mathrm{~d} z M_{1} \mathrm{~d} M_{2}} \frac{f_{\mathrm{s}}}{1+z} \frac{\mathrm{~d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{s}}} \frac{3 H_{0}^{2}}{2 \pi^{2} \rho_{c}^{2}}
$$

From single sources to h_{c}

Single-source spectrum

From single sources to h_{c}

Source distribution
Single-source spectrum

Observables

Force law ($|\alpha|>0$)

Dipole radiation ($|\gamma|>0$)

Observables

Force law ($|\alpha|>0$)

Dipole radiation ($|\gamma|>0$)

Observables

Force law ($|\alpha|>0$)

Dipole radiation ($|\gamma|>0$)

(1) Single-source features are intact

Observables

Force law ($|\alpha|>0$)

Dipole radiation ($|\gamma|>0$)

(1) Single-source features are intact
(2) Both modified slope and novel features observable

Observables

Force law ($|\alpha|>0$)
$f[\mathrm{eV}]$
Dipole radiation ($|\gamma|>0$)

(1) Single-source features are intact
(2) Both modified slope and novel features observable

Observables

Force law ($|\alpha|>0$)
$f[\mathrm{eV}]$

(1) Single-source features are intact
(2) Both modified slope and novel features observable

3 Sensitivity curves: this is happening NOW

Current data

Interpret the NANOGrav 12.5-yr result in this framework

[Arzoumanian et al., 2020]

Current data

Interpret the NANOGrav 12.5-yr result in this framework
[Arzoumanian et al., 2020]

Beyond the benchmark

Probe any new physics that affects binary dynamics

Beyond the benchmark

Probe any new physics that affects binary dynamics
(1) Charged clouds

Beyond the benchmark

Probe any new physics that affects binary dynamics
(1) Charged clouds
(2) Dark matter spikes

Beyond the benchmark

Probe any new physics that affects binary dynamics
(1) Charged clouds

2 Dark matter spikes
(3) Superradiance

Conclusions

Supermassive black holes are our new laboratories

Conclusions

Supermassive black holes are our new laboratories

SGWB discovery
is imminent

Conclusions

Supermassive black holes are our new laboratories

SGWB discovery is imminent

Long-range forces
are detectable

Conclusions

Supermassive black holes are our new laboratories

Conclusions

Supermassive black holes are our new laboratories

References I

Z. Arzoumanian et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett., 905(2):L34, 2020. doi: 10.3847/2041-8213/abd401.
C. J. Moore, R. H. Cole, and C. P. L. Berry. Gravitational-wave sensitivity curves. Class. Quant. Grav., 32(1):015014, 2015. doi: 10.1088/0264-9381/32/1/015014.
E. S. Phinney. A Practical theorem on gravitational wave backgrounds. 7 2001.
A. Sesana. Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band. Mon. Not. Roy. Astron. Soc., 433:1, 2013. doi: $10.1093 / \mathrm{mnrasl} / \mathrm{slt} 034$.

