Symmetries of Black Hole Perkurbakion Theory

Adam Solomon Carnegie Mellon Universily

w/ Lam Hui, Austin Joyce, Riccardo Penco, \$ Luca Santoni arXiv:2105.01069 arXiv:210x.xxxxx
"The black holes of nature are the most perfect macroscopic objects there are in the universe: the only elements in their construction are our concepts of space and Rime."

- Chandrasekhar

Motivation

- Black holes are simple but mysterious
- "A new era of gravitational wave astronomy "t"
- Binary EH mergers probe gravity in a wide variety of regimes
- This talk: Linear perturbations; Schwarzschild for simplicity
- Many/(all?) results apply to Kerr

Inspiral Post-Newtonian; EFT; effective one-body; perturbation theory

Merger Numerical relativity

Ringdown Perturbation theory

Black Hole Spectroscopy

- Ringdown dominated by quasinormal modes
- QNMs: decaying waves with BCs:
- Ingoing at horizon
- Outgoing at infinity
- Discrete spectra: allows spectroscopy à la atoms
- Applications: no-hair (Isi+ 1906.00869), tests of GR, BH mimickers, ...

Black Hole Spectroscopy

- Ringdown dominated by quasinormal modes
- QNMs: decaying waves with BCs:
- Ingoing at horizon
- Outgoing at infinity
- Discrete spectra: allows spectroscopy à la atoms
- Applications: no-hair (Isit 1906.00869), tests of GR, BH mimickers, ...

Figure: Berti, Cardoso, \& Starinets (0905.2975, CQG review)

Tidal Responses \& Love Numbers

- During inspiral, companion object sources a kidal field
- Cravitakional response to kidal deformation encoded in Love numbers
- Measures internal struckure
- Observable at SPN
- Wilson coefficients of point-parkicle EFT encoding finite size/structure: $S_{\mathrm{pp}}=\int \mathrm{d} \tau\left(-m+\frac{1}{2} \lambda_{E} E_{i j}^{2}+\frac{1}{2} \lambda_{B} B_{i j}^{2}+\cdots\right)$

Image: C. Henze/NASA Ames Research Center

Hines of Symmetries
(in $D=4 G R$)

Symmetry of Love? Black hole Love numbers $=0$
"Fine tuning": vanishing EFT coefficients (Porto, 1606.08896)

Symmetry of spectra? Both GW polarizations have the same QNM spectrum

Caused by a duality of the Einstein equations

A Black Hole Perturbation Theory Primer

 (for cosmologists)Expand metric around background

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\frac{1}{M_{\mathrm{Pl}}} h_{\mu \nu}
$$

Split by behavior under parity

$$
h_{\mu \nu}=h_{\mu \nu}^{\text {even }}+h_{\mu \nu}^{\text {odd }}
$$

Decompose into $(m=0)$ spherical harmonics $h_{\mu \nu}(t, r, \theta, \phi)=\sum_{\ell} h_{\mu \nu}^{\ell}(t, r) \Theta(\theta)$
(viz Fourier expansion)
Graviton has 2 dof: 1 in even sector and 1 in odd
At infinity, these correspond to $+/ x$ polarizations

Regge-Wheeler and Zerilli

- Encode dynamical d.o.f. in master variables:
- Even: Zerilli Ψ_{+}
- odd: Regge-Wheeler Ψ_{-}
- These obey simple Schrödinger-like equations
- Tortoise coordinate:

$$
\mathrm{d} r \equiv\left(1-\frac{r_{s}}{r}\right) \mathrm{d} r_{\star}
$$

$$
\begin{aligned}
& \text { Master equation: } \\
& \frac{\partial^{2} \Psi_{ \pm}(t, r)}{\partial t^{2}}-\frac{\partial^{2} \Psi_{ \pm}(t, r)}{\partial r_{ \pm}^{2}}+V_{ \pm}(r) \Psi_{ \pm}(t, r)=0
\end{aligned}
$$

Chandrasekhar's Duality

- Secret link between ReggeWheeler and Zerilli potentials:

$$
V_{+}=\frac{1-\frac{r_{s}}{r}}{r^{3}} \frac{9 r_{s}^{3}+12 \lambda^{2} r_{s} r^{2}+8 \lambda^{2}(1+\lambda) r^{3}+18 \lambda r_{s}^{2} r}{\left(2 \lambda r+3 r_{s}\right)^{2}} 2 \lambda \equiv(\ell-1)(\ell+2)
$$

$$
V_{ \pm}(r)=W^{2}(r) \mp \frac{\mathrm{d} W(r)}{\mathrm{d} r_{\star}}+\beta \quad V_{-}=\left(1-\frac{r_{s}}{r}\right)\left(\frac{\ell(\ell+1)}{r^{2}}-\frac{3 r_{s}}{r^{3}}\right)
$$

with $W(r)$ the superpotential and β a constant

- This directly implies isospectralily
Chandrasekhar (1980s)

Our question: where does this property in GR come from?

Linearized Einstein-Hilbert

To study symmetries, we want to work at the level of the action:

$$
S=\left.\frac{M_{\mathrm{Pl}}^{2}}{2} \int \mathrm{~d}^{4} x \sqrt{-g} R\right|_{g_{\mu \nu}=\bar{g}_{\mu \nu}+\frac{1}{M_{\mathrm{Pl}}} h_{\mu \nu}}
$$

Why? Allows us to calculate e.9. Noether currents

Procedure

1. Fix gauge
2. Integrate out nondynamical (auxiliary) dots
3. Canonically normalize: rescale field and coordinates
parity and spherical harmonics decoupling:

$$
S=\sum_{ \pm} \sum_{l} \int \mathrm{~d} t \mathrm{~d} r \mathscr{L}_{ \pm}^{l}(t, r)
$$

Linearized Einstein-Hilbert

Canonical normalizalion

- Coordinake choice: $r \rightarrow r_{\star}$
- Field redefinilion: $h_{\mu \nu}^{ \pm} \rightarrow \Psi_{ \pm}$

End resulk

$$
S=\frac{1}{2} \sum_{\ell=2}^{\infty} \int \mathrm{d} t \mathrm{~d} r_{\star} \sum_{ \pm}\left[\left(\frac{\partial \Psi_{ \pm}}{\partial t}\right)^{2}-\left(\frac{\partial \Psi_{ \pm}}{\partial r_{\star}}\right)^{2}-V_{ \pm}(r) \Psi_{ \pm}^{2}\right]
$$

Chandrasekhar Dualiky in Action

Replacing the potentials with the superpotential:
$S=\frac{1}{2} \sum_{\ell=2}^{\infty} \int \mathrm{d} t \mathrm{~d} r_{\star} \sum_{ \pm}\left[\left(\frac{\partial \Psi_{ \pm}}{\partial t}\right)^{2}-\left(\frac{\partial \Psi_{ \pm}}{\partial r_{\star}}\right)^{2}-\left(W^{2} \mp \frac{\mathrm{~d} W}{\mathrm{~d} r_{\star}}+\beta\right) \Psi_{ \pm}^{2}\right]$
the action is invariant under

$$
\delta \Psi_{ \pm}=\left(\frac{\partial}{\partial r_{\star}} \mp W(r)\right) \Psi_{\mp}
$$

We see that Chandrasekhar duality is a symmetry of EinsteinHilbert (i.e., off-shell)
(NB: can also write symmetry at the level of metric perturbations)

Application: Tidal Response

- Noether current for static solutions:

$$
J_{\star}^{r_{\star}}=\partial_{r_{\star}} \Psi_{+} \partial_{r_{\star}} \Psi_{-}+W\left(\Psi_{+} \partial_{r_{\star}} \Psi_{-}-\Psi_{-} \partial_{r_{\star}} \Psi_{+}\right)-\left(W^{2}+\beta\right) \Psi_{+} \Psi_{-}=\text {const } .
$$

- Regularity at the horizon: $J^{r} \star=0$
- At infinity: $\Psi_{ \pm} \propto r^{\ell+1}+\lambda_{ \pm} r^{-\ell}: J^{r_{*}} \propto\left(\lambda_{+}-\lambda_{-}\right)$
- Duality implies equal Love numbers
- Not quite vanishing, but helpful: odd sector much simpler than even

Minkowski Limit
Electric-magnetic duality
Duality in the flat limit: $\delta \Psi_{+}=-\Psi_{-}$
so (2)
$\delta \Psi_{-}=\Psi_{+}$
implies, on-shell,
$\begin{array}{cl}\text { Gravitational electric- } & \delta R_{\mu \nu \alpha \beta}=\tilde{R}_{\mu \nu \alpha \beta} \quad \tilde{R}_{\mu \nu \alpha \beta}=\frac{1}{2} \epsilon_{\mu \nu \rho o} R^{\rho \sigma}{ }_{\alpha \beta} \\ \text { magnetic duality: } & \delta \tilde{R}_{\mu \nu \alpha \beta}=-R_{\mu \nu \alpha \beta}\end{array}$
EM duality previously known symmetry of Einstein-Hilbert around Minkowski, (A)dS

Vanishing Love, Mathematically static Regge-Wheeler: $\partial_{r_{\star}}^{2} \Psi-V(r) \Psi=0$

Horizon
regular $\psi \sim$ const.
blowing up $\psi \sim \ln \left(1-r_{s} / r\right)$

Infinily
growing $\psi \sim r^{\ell} \quad$ (tidal field) decaying $\psi \sim \frac{1}{r^{\ell+1}}$ (static response)

Love number: coefficient of decaying term

Math: why do these diff eqs have this property?
Physics: why does GR give us diff eqs like this?

See also Charalambous, Dubovsky, and Ivanov (2103.01234)

Spin-o Warm-Up

Klein-cordon on Schwarzschild: $\nabla^{2} \phi=0 \longrightarrow \sum_{\ell} H_{\ell} \phi_{\ell}=0$

$$
\left.H_{\ell}=-\Delta\left[\partial_{r}\left(\Delta \partial_{r}\right)-\ell(\ell+1)\right)\right]
$$

$$
\Delta(r) \equiv r\left(r-r_{s}\right)
$$

Admils raising and Lowering operakors: $D_{\ell}^{+} \equiv-\Delta \partial_{r}+\frac{\ell+1}{2}\left(r_{s}-2 r\right)$

$$
D_{\ell}^{-} \equiv \Delta \partial_{r}+\frac{\ell}{2}\left(r_{s}-2 r\right)
$$

in the sense that

$$
\begin{aligned}
& H_{\ell+1}\left(D_{\ell}^{+} \phi_{\ell}\right)=0 \\
& H_{\ell-1}\left(D_{\ell}^{-} \phi_{\ell}\right)=0
\end{aligned}
$$

Turning the Ladder Sideways

- The raising/lowering symmetry $D_{\ell}^{ \pm}$is unusual: it relates solutions at different levels l
- Want: a symmetry for each level individually
- Strategy: Lower to $\ell=s$ and use translation symmetry
- Horizontal symmetry: $\delta \phi_{\ell}=Q_{\ell} \phi_{\ell}$

$$
\begin{aligned}
Q_{0} & \equiv \Delta \partial_{r} \\
Q_{1} & \equiv D_{0}^{+} Q_{0} D_{1}^{-}
\end{aligned}
$$

- Conserved charge:

$$
\begin{aligned}
& P_{\ell} \equiv \Delta \partial_{r}\left(D_{1}^{-} D_{2}^{-} \cdots D_{\ell}^{-} \phi_{\ell}\right) \\
& P_{0}=\Delta \partial_{r} \phi_{0}
\end{aligned}
$$

See also Compton and Morrison (2003.08023)

$$
Q_{\ell} \equiv D_{\ell-1}^{+} Q_{\ell-1} D_{\ell}^{-}
$$

Habsecticc

- Charge conservation implies Love $=0$
- $P_{l}=0$ for growing (infinity) and constant (horizon) modes
- $P_{\ell} \neq 0$ for decaying (infinity) and divergent (horizon) modes
- Spontaneous symmetry breaking:

$$
Q_{t} \phi_{l}^{(\mathrm{g})}=0, \quad Q_{t} \phi_{l}^{(\mathrm{d})} \neq 0
$$

- Conclusion: a decaying term diverges at the horizon
- This also implies no (static) hair

Ladders Up and Down

Ceometric Interprebalion
 From Schwarzschild to AdS

Static scalar: $S=\frac{1}{2} \int \mathrm{~d}^{3} x \sqrt{8} \phi \square \phi$
Conformal transformation:
$\tilde{g}_{i j}=L^{4} \Delta^{-2} g_{i j}, \quad \tilde{\phi}=L^{-1} \sqrt{\Delta} \phi$
L: arbitrary scale
so that
$S=\frac{1}{2} \int \mathrm{~d}^{3} x \sqrt{\tilde{g}}\left(\tilde{\phi} \tilde{\square} \tilde{\phi}+\frac{r_{s}^{2}}{4 L^{4}} \tilde{\phi}^{2}\right)$
The metric $\tilde{g}_{i j}$ is nothing other than $A d S_{3}$

Geomelric Interprebation
 From schwarzschild to AdS

$S=\frac{1}{2} \int \mathrm{~d}^{3} x \sqrt{\tilde{g}}\left(\tilde{\phi} \tilde{\square} \tilde{\phi}+\frac{r_{s}^{2}}{4 L^{4}} \tilde{\phi}^{2}\right)$
Killing vectors of AdS_{3} generate isometry:
$\delta \phi=-2 \Delta \cos \theta \partial_{r} \phi+\left(r_{s}-2 r\right) \partial_{\theta}(\sin \theta \phi)$
Decompose in spherical harmonics:
$\delta \phi_{\ell} \sim D_{\ell-1}^{+} \phi_{\ell-1}+D_{\ell+1}^{-} \phi_{\ell+1}$

To Kerr: Spin Ladder
Teukolsky equation:

$$
\partial_{r}\left(\Delta \partial_{r} \phi_{\ell}^{(s)}\right)+s\left(2 r-r_{s}\right) \partial_{r} \phi_{\ell}^{(s)}+\left(\frac{a^{2} m^{2}+i s\left(2 r-r_{s}\right) a m}{\Delta}-(\ell-s)(\ell+s+1)\right) \phi_{\ell}^{(s)}=0
$$

Admits ladders in ℓ and spin!

$$
E^{+} \equiv \partial_{r}, \quad E_{s}^{-} \equiv \Delta \partial_{r}-s\left(r_{+}+r_{-}-2 r\right)-2 i a m \frac{r_{+}-r_{-}}{r_{+}-r_{-}}
$$

Relates solutions to Klein-Cordon, Maxwell, and Einstein

IR symmetries

Point-particle EFT:
treat BH as a point, encode structure in higher-order operators
γ : worldline einbein
g: (monopole) scalar charge
λ_{t} : Love numbers

$$
S=-\frac{1}{2} \int \mathrm{~d}^{4} x(\partial \phi)^{2}+\int \mathrm{d} \tau \gamma\left[\frac{1}{2} \gamma^{-2} \dot{x}^{\mu} \dot{x}_{\mu}-\frac{\mu^{2}}{2}-g \phi+\sum_{\ell=0}^{\infty} \frac{\lambda_{\ell}}{2 \ell!}\left(\partial_{\left(a_{1}\right.} \cdots \partial_{\left.a_{\ell}\right)_{T}} \phi\right)^{2}\right]
$$

UV symmetry in flak-space limit: $\quad \delta \phi=r^{2} \cos \theta \partial_{r} \phi+r \partial_{\theta}(\sin \theta \phi)$

Punchline: only the bulk $(\partial \phi)^{2}$ term is invariant

Summary

- Vanishing Love numbers and isospectral QNMs both indicate hidden symmetries of GR (/massless fields on Schwarzschild)
- We find symmetries of Einstein-Hilbert underlying these:
- QNMS: EM duality on Schwarzschild
- Love $=0$: Ladder symmetries (shift sym + conformal Killing vector/ladder syms)

