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We present the complete solution to a 95% scalar field cosmological model in which the dark matter is
modeled by a scalar field # with the scalar potential V(#)!V0$cosh(%!&0#)"1' and the dark energy is
modeled by a scalar field ( , endowed with the scalar potential Ṽ(()!Ṽ0$sinh()!&0()'*. This model has
only two free parameters, % and the equation of state +( . With these potentials, the fine-tuning and cosmic
coincidence problems are ameliorated for both dark matter and dark energy and the model agrees with astro-
nomical observations. For the scalar dark matter, we clarify the meaning of a scalar Jeans length and then the
model predicts a suppression of the mass power spectrum for small scales having a wave number k#kmin,# ,
where kmin,#!4.5h Mpc"1 for %!20.28. This last fact could help to explain the death of dwarf galaxies and
the smoothness of galaxy core halos. From this, all parameters of the scalar dark matter potential are com-
pletely determined. The dark matter consists of an ultralight particle, whose mass is m#!1.1$10"23 eV and
all the success of the standard cold dark matter model is recovered. This implies that a scalar field could also
be a good candidate the dark matter of the Universe.

DOI: 10.1103/PhysRevD.63.063506 PACS number!s": 98.80.Cq, 95.35.%d

I. INTRODUCTION

Observations of the luminosity-redshift relation of type Ia
supernovae !SNIa" suggest that distant galaxies are moving
slower than predicted by Hubble’s law, implying an acceler-
ated expansion of the Universe $1'. These observations open
the possibility of the existence of an energy component in
the Universe with a negative equation of state +&0, p
!+, being called dark energy. This component would be
the currently dominant component in the Universe and its
ratio relative to the whole energy would be -./70%. The
simplest model for this dark energy is a cosmological con-
stant (.), in which +!"1. The matter component -M
/30% of the Universe decomposes itself into baryons, neu-
trinos, etc., and cold dark matter which is responsible for the
formation of the structure in the Universe. Observations in-
dicate that stars and dust !baryons" represent something close
to 0.3% of the whole matter of the Universe. The new mea-
surements of the neutrino mass indicate that neutrinos con-
tribute with the same quantity as dust. In other words,
say -M!-b%-0%•••%-DM/0.05%-DM , where -DM
represents the dark matter part of the matter contributions
which has a value of -DM/0.25. The value of the amount of
baryonic matter (/5%) is in agreement with the limits im-
posed by nucleosynthesis !see, for example, Ref. $2'". Then,
this model considers a flat universe (-.%-M11) with
95% of unknown matter but which is of great importance at
the cosmological level. Moreover, it seems to be the most
successful model fitting current cosmological observations
$3'.
However, from the theoretical point of view, . has some

problems. First, the initial conditions have to be set precisely
at one part in 10120, that is, an extreme fine-tuning problem

appears. Second, the cosmic coincidence: why is the current
value of the energy density contribution of the cosmological
constant of the same order than matter? Third, particle theory
predicts a zero cosmological constant, why is it not zero?
These problems can be ameliorated by quintessence, the
model of a fluctuating, inhomogeneous scalar field !Q" roll-
ing down a scalar potential V(Q) $4'. It is assumed that flat
models with -M!0.33'0.05 and a current value of the
equation of state +Q!"0.65'0.07 (+Q can change along
the evolution of the Universe" are the most consistent with
all observations $5'. However, there is not agreement about
which scalar potential V(Q) is the correct one. For instance,
the pure exponential potential has been extensively analyzed
$6–11'. It is known that there is a solution which makes the
scalar energy density scales as the dominant background one,
that could help to ameliorate the fine-tuning problem. Also,
there is another solution that could make the Universe in-
flate, in good accordance with SNIa observations. Moreover,
in a scalar dominated universe, the scalar potential is effec-
tively an exponential one $9'. But nucleosynthesis con-
straints require -Q20.2, and then an exponential potential
would never dominate the Universe $8'.
Another example is a special group of scalar potentials,

named tracker solutions $4'. The cosmology for these poten-
tials is the same and independent of a large range of initial
conditions !about 100 orders of magnitude", avoiding fine-
tuning. The equation of state +Q changes with time towards
"1 $4,5', and then it can dominate the evolution of the Uni-
verse at late times. A typical example is the pure inverse
power-law potential V(Q)/Q") ()#0) $4,6,12'. But the
predicted value for the current equation of state of the quin-
tessence cannot be put in good accordance with supernovae
results $4'. The same problem arises with other inverse
power-law-like potentials. Another possibility is the poten-
tials proposed in Ref. $13'. They can solve the troubles stated
above, but it is difficult to uniquely determine their free pa-
rameters.
On the other hand, we do not know the nature of the dark
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Cold dark matter (CDM) models predict small-scale structure in excess of observations of the cores
and abundance of dwarf galaxies. These problems might be solved, and the virtues of CDM models
retained, even without postulating ad hoc dark matter particle or field interactions, if the dark
matter is composed of ultra-light scalar particles (m ∼ 10−22eV), initially in a (cold) Bose-Einstein
condensate, similar to axion dark matter models. The wave properties of the dark matter stabilize
gravitational collapse providing halo cores and sharply suppressing small-scale linear power.

Introduction.— Recently, the small-scale shortcomings of
the otherwise widely successful cold dark matter (CDM)
models for structure formation have received much at-
tention (see [1–4] and references therein). CDM models
predict cuspy dark matter halo profiles and an abundance
of low mass halos not seen in the rotation curves and lo-
cal population of dwarf galaxies respectively. Though the
significance of the discrepancies is still disputed and so-
lutions involving astrophysical processes in the baryonic
gas may still be possible (e.g. [5]), recent attention has
mostly focused on solutions involving the dark matter
sector.

In the simplest modification, warm dark matter (m ∼
keV) replaces CDM and suppresses small-scale struc-
ture by free-streaming out of potential wells [3], but this
modification may adversely affect structure at somewhat
larger scales. Small-scale power could be suppressed
more cleanly in the initial fluctuations, perhaps originat-
ing from a kink in the inflaton potential [2], but its regen-
eration through non-linear gravitational collapse would
likely still produce halo cusps [6].

More radical suggestions include strong self-
interactions either between dark matter particles [1] or
in the potential of axion-like scalar field dark matter [4].
While interesting, these solutions require self-interactions
wildly in excess of those expected for weakly interacting
massive particles or axions respectively.

In this Letter, we propose a solution involving free par-
ticles only. The catch is that the particles must be ex-
traordinarily light (m ∼ 10−22eV) so that their wave
nature is manifest on astrophysical scales. Under this
proposal, dark matter halos are stable on small scales for
the same reason that the hydrogen atom is stable: the
uncertainty principle in wave mechanics. We call this
dark matter candidate fuzzy cold dark matter (FCDM).

Equations of Motion.— It is well known that if the dark
matter is composed of ultra-light scalar particles m "
1eV, the occupation numbers in galactic halos are so high
that the dark matter behaves as a classical field obeying
the wave equation

!φ = m2φ , (1)

where we have set h̄ = c = 1. On scales much larger than

the Compton wavelength m−1 but much smaller than
the particle horizon, one can employ a Newtonian ap-
proximation to the gravitational interaction embedded in
the covariant derivatives of the field equation and a non-
relativistic approximation to the dispersion relation. It is
then convenient to define the wavefunction ψ ≡ Aeiα, out
of the amplitude and phase of the field φ = A cos(mt−α),
which obeys

i(∂t +
3

2

ȧ

a
)ψ = (−

1

2m
∇2 + mΨ)ψ , (2)

where Ψ is the Newtonian gravitational potential. For
the unperturbed background, the right hand side van-
ishes and the energy density in the field, ρ = m2|ψ|2/2,
redshifts like matter ρ ∝ a−3.

On time scales short compared with the expansion
time, the evolution equations become

i∂tψ = (−
1

2m
∇2 + mΨ)ψ , ∇2Ψ = 4πGδρ . (3)

Assuming the dark matter also dominates the energy
density, we have δρ = m2δ|ψ|2/2. This is simply the non-
linear Schrödinger equation for a self-gravitating particle
in a potential well. In the particle description, ψ is pro-
portional to the wavefunction of each particle in the con-
densate.

Jeans / de Broglie Scale.— The usual Jeans analysis tells
us that when gravity dominates there exists a growing
mode eγt where γ2 = 4πGρ; however a free field oscillates
as e−iEt or γ2 = −(k2/2m)2. In fact, γ2 = 4πGρ −
(k2/2m)2 and therefore there is a Jeans scale

rJ = 2π/kJ = π3/4(Gρ)−1/4m−1/2 ,

= 55m−1/2
22 (ρ/ρb)

−1/4(Ωmh2)−1/4kpc , (4)

below which perturbations are stable and above which
they behave as ordinary CDM. Here m22 = m/10−22eV
and ρb = 2.8 × 1011Ωmh2M" Mpc−3 is the background
density. The Jeans scale is the geometric mean between
the dynamical scale and the Compton scale (c.f. [7–9]) as
originally shown in a more convoluted manner by [10].

The existence of the Jeans scale has a natural interpre-
tation: it is the de Broglie wavelength of the ground state
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A New Cosmological Model of Quintessence and Dark Matter
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We propose a new class of quintessence models in which late times oscillations of a scalar field give
rise to an effective equation of state which can be negative and hence drive the observed acceleration
of the universe. Our ansatz provides a unified picture of quintessence and a new form of dark matter
we call Frustrated Cold Dark Matter (FCDM). FCDM inhibits gravitational clustering on small scales
and could provide a natural resolution to the core density problem for disc galaxy halos. Since the
quintessence field rolls towards a small value, constraints on slow-roll quintessence models are safely
circumvented in our model.

PACS number(s): 04.62.+v, 98.80.Cq

The recent discovery that type Ia high redshift super-
novae are fainter than they would be in an Einstein-de
Sitter universe suggests that the universe may be acceler-
ating, fuelled perhaps by a cosmological constant or some
other field possessing long range ‘repulsive’ effects [1,2].
The acceleration of the universe is related to the equation
of state of matter through the Einstein equation

ä

a
= −

4πG

3

[

ρc + ρX(1 + 3wX)
]

(1)

for cold matter ρc and X-matter with equation of state
PX = wρX . Clearly a necessary (but not sufficient) con-
dition for the universe to accelerate is wX < −1/3. In
other words the equation of state of X-matter must vi-
olate the strong energy condition (SEC) so that ρX +
3PX < 0. Investigations of cosmological models with
Ωm + ΩX " 1 have demonstrated that these models out-
perform most others in predicting the correct form for
the large scale clustering spectrum, accounting for CMB
anisotropies on large and intermediate angular scales
and providing excellent agreement with the luminosity-
distance relation obtained from observations of high red-
shift supernovae [3]. In addition, flat models are com-
pelling from a theoretical viewpoint since they agree with
generic predictions made by the inflationary scenario.

The literature describing phenomenological forms of
matter violating the SEC is vast (see [4] for a recent re-
view). Nevertheless two kinds of matter have been sin-
gled out in recent times as being of special interest:

1. A cosmological constant PX = −ρX (wX = −1),
Λ ≡ ρX/8πG.

2. A scalar field rolling down a potential V (φ).

For fields rolling sufficiently slowly φ̈ " 0 and Tik "
V (φ)gik, so that V (φ) plays the role of a time-dependent
Λ-term. Although appealing, models with the simplest
potentials including V ∝ m2φ2 run into problems similar
to those encountered by a cosmological constant. The
enormous overdamping of the scalar field equation dur-
ing radiation and matter dominated epochs causes V (φ)

to remain unchanged virtually from the Planck epoch
zpl ∼ 1019 to z ∼ 2 [5] resulting in an enormous differ-
ence in the scalar field energy density and that of mat-
ter/radiation at early times. This leads to a fine tuning
problem: the relative values of ρφ and ρm must be set
to very high levels of accuracy (ρφ/ρm)initial ∼ 10−123 in
order to ensure ρφ/ρm ∼ 1 at precisely the present epoch.

A more reasonable assumption might be if the energy
density in the φ-field were comparable to that of radiation
at very early times – say at the end of inflation [6]. This
might even be expected if the φ-field were to be an in-
flationary relic, its energy set by an equipartition ansatz.
However for the φ-field to remain subdominant until re-
cently its energy density must decrease rapidly at early
times. Such behaviour clearly cannot arise for polynomial
potentials V (φ) ∝ φp, 0 < p <∼ few, for which ρφ will
rapidly dominate the total density resulting in a colossal
Λ-term today if ρφ ∼ ρrad initially. Fortunately there do
exist families of potentials for which the behaviour of ρφ
is more flexible. To illustrate this, consider a minimally
coupled scalar field rolling down the potential

V (φ) = V0(coshλφ− 1)p. (2)

V (φ) has asymptotic forms:

V (φ) " Ṽ0e
−pλφ for |λφ| & 1 (φ < 0), (3)

V (φ) " Ṽ0(λφ)2p for |λφ| ' 1 (4)

where Ṽ0 = V0/2p. Scalar field models with the poten-
tial V (φ) ∝ e−pλφ have the attractive property that the
energy density in φ tracks the the radiation/matter com-
ponent as long as the value of φ is large and negative, so
that [7]:

ρφ
ρB + ρφ

=
3(1 + wB)

p2λ2
(5)

(wB = 0, 1/3 respectively for dust, radiation). During
later times the form of V (φ) changes to a power law (4)
resulting in rapid oscillations of φ about φ = 0. The
change in the form of the scalar field potential is accom-
panied by an important change in the equation of state of
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Quintessential Haloes around Galaxies
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The nature of the dark matter that binds galaxies remains an open question. The favored
candidate has been so far the neutralino. This massive species with evanescent interactions is now
in difficulty. It would actually collapse in dense clumps and would therefore play havoc with the
matter it is supposed to shepherd. We focus here on a massive and non–interacting complex scalar
field as an alternate option to the astronomical missing mass. We investigate the classical solutions
that describe the Bose condensate of such a field in gravitational interaction with matter. This
simplistic model accounts quite well for the dark matter inside low–luminosity spirals whereas the
agreement lessens for the brightest objects where baryons dominate. A scalar mass m ∼ 0.4 to
1.6 × 10−23 eV is derived when both high and low–luminosity spirals are fitted at the same time.
Comparison with astronomical observations is made quantitative through a chi–squared analysis.
We conclude that scalar fields offer a promising direction worth being explored.

I. INTRODUCTION.

The observations of the Cosmic Microwave Background anisotropies [1] point towards a flat universe. The deter-
mination of the relation between the distance of luminosity and the redshift of supernovae SNeIa [2] strongly favors
the existence of a cosmological constant which contributes a fraction ΩΛ ∼ 0.7 to the closure density. The pressure–
to–density ratio w of that fluid is negative with a value of w = −1 in the case of an exact cosmological constant.
Alternatively, this component could be in the form of dark energy – the so–called quintessence – whose simplest
incarnation is a neutral scalar field Φ with the Lagrangian density

L =
1

2
g µν ∂µΦ ∂νΦ − V (Φ) . (1)

Should the metric be flat and the field homogeneous, the energy density may be expressed as

ρ ≡ T 0
0 =

Φ̇2

2
+ V (Φ) , (2)

whereas the pressure obtains from Tij ≡ −g ij P so that

P =
Φ̇2

2
− V (Φ) . (3)

If the kinetic term is negligible with respect to the contribution of the potential, a pure cosmological constant –
ω = −1 – is recovered. Cosmological scenarios with quintessence in the form of a scalar field have been investigated
[3] with various potentials and their relevance to structure formation has been discussed.

On the other hand, matter contributes a fraction ΩM ∼ 0.3 to the energy balance of the universe. The nature of
that component is still unresolved insofar as baryons amount only to [4]

ΩB h2 = 0.02± 0.002 . (4)

According to the common wisdom, non–baryonic dark matter would be made of neutralinos – a massive species with
weak interactions that naturally arises in the framework of supersymmetric theories. This approach has given rise to
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−g

∂μ( −ggμν∂νϕ) =
∂V
∂ϕ

Klein-Gordon equation

Non-relativistic!

V(ϕ) =
1
2

m2
aϕ2

(Fuzzy Dark Matter)



Axion-like potential
Linares et al, PRD 96 (2017) 061301(R) 
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ffiffiffi
2

3

r
κ _φ
H

≡−Ω1=2
ϕ eαcosðϑ=2Þ; κy1φffiffiffi

6
p ≡−Ω1=2

ϕ eα sinðϑ=2Þ;

ð7Þ

with α and ϑ, the new variables needed for the evolution of
the scalar field perturbations. But if we further define
δ0 ¼ −eα sinðθ=2 − ϑ=2Þ and δ1 ¼ −eα cosðθ=2 − ϑ=2Þ,
then Eq. (6) takes on a more manageable form,

δ00¼
"
−3sinθ−

k2

k2J
ð1−cosθÞ

#
δ1þ

k2

k2J
sinθδ0−

h̄0

2
ð1−cosθÞ;

ð8aÞ

δ01 ¼
"
−3 cos θ −

$
k2

k2J
−
λΩϕ

2y1

%
sin θ

#
δ1

þ
$
k2

k2J
−
λΩϕ

2y1

%
ð1þ cos θÞδ0 −

h̄0

2
sin θ; ð8bÞ

where k2J ≡ a2H2y1 is the (squared) Jeans wave number
and a prime again denotes derivative with respect to the
number of e-folds, N. Notice that the new dynamical
variable δ0 is the axion density contrast, as a straight-
forward calculation using Eqs. (3) and (7) shows that
δρϕ=ρϕ ¼ ð _ϕ _φþ∂ϕVφÞ=ρϕ ¼ δ0. This implies that
Eq. (8a) is the closest expression one can find to a fluid
equation for the evolution of the axion density contrast. The
physical interpretation of δ1 is by no means as direct as that
of δ0, and then Eq. (8b) tells us of the difficulties to match
the equations of motion of scalar field linear perturbations
to those of a standard fluid [54]. For the initial conditions,
we use the attractor solutions at early times [28] given by
δ0i ¼ −h̄iθ2i =84 and δ1i ¼ −h̄iθi=7, where h̄i and θi are,
respectively, the initial values of the trace of metric
perturbations h̄ and the background angular variable θ.
The solution of Eq. (8) is useful to build up cosmological

observables such as the mass power spectrum (MPS), which
we show for the axion field and CDM in Fig. 2. It is well
known that there is a characteristic cutoff in theMPSof a free
field, and this feature is also present for the axion case,
although the cutoff is shifted towards smaller scales (larger
wave numbers). But more prominently, the axion MPS
presents an excess of power, even compared to CDM, at
scales close to the cutoff if λ ≫ 1. Such excess was reported
before in Refs. [55,56] (see also Ref. [57] for an early
indication of such power excess in scalar field models) and
attributed to the so-called extreme initial conditions of the
background field (under our approach, this means
ϕ=f → 0). As we shall explain below, the excess should
be rightfully attributed to the extreme value of λ ≫ 1 [which
in turn has an effect on the initial conditions via Eq. (5)],
and then ultimately to the decay constant f.
Also shown in Fig. 2 are the free (with mass

m%
ϕ ¼ 3.635 × 10−22 eV and λ ¼ 0) and extreme cases

(with λ ¼ 1.3 × 105) whose MPS differs by 50% from that
of CDM at the same wave number, namely,

k50% ¼ 11.218h=Mpc. However, it is important to highlight
that both cases have a very different behavior at smaller and
larger values of k, which means that the axion MPS is
nondegenerate with respect to that of the free case.
Moreover, this also shows that the axion case ðmϕ; λ ≠ 0Þ
cannot be exactly matched to a free case ðm%

ϕ; λ ¼ 0Þ.
As for the excess of power at some scales in the MPS, we

first note that the presence of λ in Eq. (8b) defines an
effective wave number in the form k2eff ¼ k2 − λa2H2Ωϕ=2,
which, in contrast to the ratio k2=k2J that appears in the free
case, it could be positive as well as negative. Taking
advantage of the similarities with the free case [28], we
will study the homogeneous solutions of Eq. (8) (without the
driving terms) after the onset of the rapid oscillations of the
axion field. We first discard all the trigonometric terms, and
then Eq. (8) can be written as: δ00 ≃ −ðk2=k2JÞδ1 and
δ01 ≃ ðk2eff=k2JÞδ0. Under the assumption that both functions
k2eff and k2J are approximately constant, we obtain that the
density contrast has a harmonic solution of the form
δ0 ∼ C0 cosðωNÞ, where the (squared) fundamental fre-
quency is ω2 ¼ k2k2eff=k

2
J and C0 is an integration constant.

Just like in the free case, it can be seen that if 0 < jω2j ≪ 1,
the homogeneous solution of Eq. (8) becomes irrelevant and
then the axion density contrast can grow similarly to that of
CDM. Similarly, if 1 ≪ ω2, the growth of the density
contrast is strongly suppressed and there appears a sharp
cutoff in theMPS at large k (small scales). But nowwemust
also consider the possibility that ω2 ≪ −1, for which the
homogeneous solution changes to δ0 ∼ C0 coshðjωjNÞ, and

FIG. 2. MPS at the present time for an axion field with the same
values of λ as in Fig. 1. The characteristic cutoff of the axion MPS
is clearly seen, together with some differences at small scales
induced by the physical parameter, λ. MPS data from BOSS
DR11 (brown dots) [59] and from Lyα forest (purple dots) [60]
are shown for reference. (Inset) Zoom in of the MPS for large
values of k. It is concluded that the presence of the parameter λ
produces a bump when λ ≫ 1. The blue dashed vertical line
shows the difference between the extreme case λ ¼ 1.3 × 105

with respect to CDM at 50%. The red line represents the free case
with a mass m%

ϕ ¼ 3.635 × 10−22 eV, whose MPS differs at 50%
from CDM just as the extreme axion case, at a wave number,
k50% ¼ 11.218h=Mpc. See the text for more details.
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According to diverse studies in Refs. [67–69], the param-
eter that quantifies the strength of the self-interaction is the
combination g4=ð4πGm2

ϕÞ ¼ −λ=3. In the extreme case
λ ≫ 1, equilibrium gravitational configurations of the
coupled Gross-Pitaevskii-Poisson system present stable
and unstable branches (see also Refs. [70,71] for the
relativistic axion case), and the critical quantities at the
transition point between the two branches have been found
to be ϕc=f ≃ λ−1=2 (for the central field value) and Mc ≃
λ−1=2m2

Pl=mϕ (for the total mass), where mPl is the Planck
mass [67–69]. On one hand, stable configurations then
correspond to field values ϕ=f ≤ λ−1=2, and then the

gravitational stability of an axion configuration requires
a more diluted field for larger λ. At the same time, the
critical total massMc also decreases for larger λ, and for the
fiducial model considered throughout we find Mc ∼
109 M⊙ if λ ¼ 105. As already noted in Ref. [69], this
means that even the less massive halo objects in a typical
simulation (see for instance [66]) would be at risk to
collapse into black holes.
All of the above leads us to wonder about the possibility

of having λ < 0, so that the quartic self-interaction g4 is
strictly positive definite. In such a case, the gravitational
stability of bounded objects is instead enhanced by the
presence of λ and then the difficulties of the extreme axion
case are easily avoided [72–80]. This requires, at least
formally, that ðf=mPlÞ2 < 0 and then the trigonometric
potential (1) is replaced by the hyperbolic one studied in
Refs. [81–83]. The study of such a case is part of ongoing
work that will be presented elsewhere.
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FIG. 4. 1D MPS for the axion field compared to the ΛCDM
one. We show the cases mϕ ¼ 10−22 eV for λ ¼ 0; 1.3 × 105

(blue lines), and mϕ ¼ 4 × 10−21 eV for λ ¼ 0; 1.3 × 105;
3 × 105 (green lines). For reference we have included horizontal
lines indicating the rough precision of current data from BOSS
[61], HIRES/MIKES [62], and XQ100 [63] to show that this can
be used to constraint both parameters mϕ and λ.
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Figure 7. Upper panel : The �2 distributions of di↵erent simula-
tions at each redshift bin. Two abnormal peaks occur at redshift
bins z = 3 and z = 4 for all models while other redshift bins ap-
pear distributed normally. Lower panel : The di↵erence of the �2

distributions of various dark matter models from the �2 distribu-
tions of CDM through ��2 (z) = �2

CDM (z) � �2
other (z).

Figure 8. The transmitted flux power spectra of BOSS
(Palanque-Delabrouille et al. 2013), XQ-100 (Iršič et al. 2017c)
and model predictions at z = 4.0. It clearly shows that the power
of BOSS is higher than that of XQ-100 around k > 0.015 s km�1,
while the predictions are closer to the latter than the former.

4 DISCUSSIONS

We plot in Fig. 7 the �2 distributions over the redshift range
and the di↵erence of �2 for the CDM model from relevant
EA DM models so as to reveal detailed di↵erences. With
the latter, one clearly observes that EA2.5 has similar but
slightly smaller �2 than CDM at all redshifts, a reflection of
the close similarity at all redshifts in matter power spectra
of the two models as shown in Figs.5 and 6. We also find
that EA5.0 has similar �2 as CDM except at low redshifts.

We however find two distinct peaks in �2 distributions
for all dark matter models at the same redshifts. This un-
usual behaviour suggests that the predicted 1D flux power
spectra have non-negligible systematic deviations from the
BOSS data near z = 3.0 and z = 4.0 that calls for attention.

On the other hand, ��2 shows no such distinct features,
indicating that this problem is likely related to gas physics
and not cosmological models.

The fact that �2(z) gets abruptly enhanced at z = 4
may have been related to the problem of the BOSS data
quality. Fig. 8 compares the flux power spectra data of BOSS
(Palanque-Delabrouille et al. 2013)and XQ-100 (Iršič et al.
2017c) at z = 4.0, clearly revealing that the BOSS spectrum
is inconsistent with XQ-100 spectrum at high-k bins. Our
best-fit spectra tend to follow the XQ-100 spectrum more
closely than the BOSS spectrum at high-k. We have also
checked the consistency between the BOSS data and the
XQ-100 data in other redshift bins and found that, except
for z = 4.0, they are all consistent. Therefore, this peak of
�2(z) at z = 4 is likely caused by some systematic errors of
high-k BOSS data at this redshift.

The absence of non-uniform ionisation of helium gas
in our simulations may explain the poor match of our pre-
dictions with the data at z = 3. Recent observations sug-
gest that the helium reionisation epoch had been started at
z & 3.0 and ended at z ' 2.7: (a) a helium Gunn-Peterson
trough at z ' 3.0 was reported by Syphers & Shull (2014)
indicating that reionisation of helium is not completed by
that time, but (b) HeIII Ly↵ has already become transpar-
ent at z ' 2.7 (Worseck et al. 2011). It has been asserted
that despite the presence of local UV sources, uniform UVB
can be a good approximation for z ⇠ 2�4, except z = 2.7�3,
due to large UV mean free paths. But during z ⇠ 2.7�3.0, in-
tense UV radiation from the onset of quasars renders the he-
lium rapidly reionised. Helium reionisation reduces the UV
mean free path and is patchy, thus yielding local UV heat-
ing (La Plante et al. 2017). Our simulations assume uniform
UVB and do not take the non-uniform UV heating into ac-
count. This problem possibly leads to the more substantial
deviation of our predictions from the BOSS data around
z = 3 than expected.

5 CONCLUSION

In this paper, we investigate the viability of EA DM to
explain Ly↵ forest absorption spectra. Our N-body hydro-
dynamical simulations in the wave-like dark matter scenario
are based on three hypotheses. I) Quantum e↵ects are ap-
proximately represented by modification on the linear mat-
ter power spectrum. II) UV background is spatially uniform
and gas is optically thin and in ionisation equilibrium. III)
The cosmological parameters are the same as the one op-
timised for the CDM model. Our simulations produce pre-
dicted Ly↵ absorption spectra from di↵erent dark matter
scenarios upon applying a posterior process discussed in Sec.
2.4. Confronting the low-resolution BOSS data, we have ap-
proximately identified that the EA DM model with �✓ ⇠ 2.5
best matches the observation assuming mb = 1.1 ⇥ 10�22

eV. The more precise value of �✓ likely lies in the range of
2.0o � 4.0o through interpolation from Table 1.

Our results further show that the predicted Ly↵ flux
power spectra in the CDM model produces a signifi-
cantly larger �2

total(= 481) than the best EA DM model of

(mb ,�✓) = (1.1 ⇥ 10�22eV,2.5o ) does with �2
total = 456.8.

Though all cosmological parameters used in EA DM simu-
lations are optimised for CDM, the best EA DM model still
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Figure 3. The amplitude of the density contrast |�0|, for two representative cases: large scales (left
panel), and small scales (right panel). The SF mass in these examples is ma22 = 2.3⇥ 10�2. On large
scales, the SF density contrast follows first the attractor solution (4/15)�CDM (dashed black curve),
whereas it matches CDM exactly after the onset of rapid oscillations. The attractor solution is also
followed at early times in the case of small scales, but the density contrast do not grow afterwards.
For comparison, we also show the results corresponding to the free case [15] (dashed curves in color).
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Figure 4. MPS at the present time for SFDM with a cosh potential, for the values of the SF mass
and (��) as indicated in the plot. Also shown is the quadratic potential with the same values of the
SF mass (dashed lines in colour). The MPS appears to be the same for both models, see the text for
more details.

The key parameter here is the quartic coupling that arises from the series expansion
of potential (1.2) up to the fourth order: V (�) ' (m2

a/2)�
2 + (m2

af
�2
a /24)�4. Following

standard nomenclature [93], although adapted for real scalar fields (see eqs. (3.3) below), the
self-interaction strength that is of physical interest is quantified by the combination5

⇤g ⌘ m
2

af
�2

a /(32⇡Gm
2

a) = 3/(122f2

a ) = ��/12 , (3.1)

5Notice that the interaction parameter in the case of boson stars, as originally defined in [95], is ⇤g ⌘
g4/(4⇡Gm2

a), where g4 is the quartic coupling constant as in (g4/4)�
4. In the case of real scalar fields, a

more appropriate definition is ⇤g ⌘ 3g4/(8⇡Gm2
a) [92, 96]. Once we consider the Newtonian limit of the

Klein-Gordon equation for real scalar fields, it appears convenient to further take ⇤g ⌘ 3g4/(16⇡Gm2
a),

see [33, 34, 97]. The latter is the definition used to write ⇤g in eq. (3.1).
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Figure 2. The extra relativistic degrees of freedom �Ne↵ induced by the non-negligible contribution
of the SF density at around the time of nucleosynthesis. The shaded region represents the reported
constraint in [1], �Ne↵ < 0.3 at 95%CL.

included, are given by Ne↵ = (⇢rad + ⇢�)/⇢⌫ , with ⇢⌫ the neutrino density. The resultant
e↵ect is shown in figure 2, for the indicated values of the SF mass and in terms of the quantity
�Ne↵ ⌘ Ne↵ � 3.046.

The non-negligible contribution of the SF to �Ne↵ can be clearly seen during radiation
domination and at the time around nucleosynthesis (see also figure 1). The present con-
straints, from [1], then indicate that ⌦� < 3.5⇥ 10�2, which in turn translates, by means of
eq. (2.6), into�� > 3.4⇥102. Considering the values shown in table 1, the cosh potential (1.2)
then evades the nucleosynthesis constraints as long as its field mass is ma22 > 10�2.

As a final note, we contrast the nucleosynthesis constraint on the cosh potential to
that applied on a SFDM with a quartic self-interaction (although with a complex SF) [25]:
for the latter there is a kinetic dominate phase (which manifests as a sti↵-fluid behavior)
prior to the radiation-like behavior of the SF. Thus, one has to finely tune the values of
the SF mass and the quartic interacting parameter to avoid any undesirable e↵ects upon
the nucleosynthesis process.4 The cosh potential (1.2) evades such tight constraints because
the early radiation-like solution (2.6) is a quite stable attractor solution of the equations of
motion (2.4).

2.2 Linear density perturbations

We now turn our attention to the linear field perturbations ' around the background value
in the form �(x, t) = �(t) + '(x, t). As in previous works, we choose the synchronous gauge
with the line element ds2 = �dt

2 + a
2(t)(�ij + h̄ij)dxidxj , where h̄ij is the tensor of metric

perturbations. The equation of motion for a given Fourier mode '(k, t) reads [74, 75, 90, 91]

'̈ = �3H'̇�

k
2

a2
+m

2

a cosh(�/f)

�
'� 1

2
�̇
˙̄
h , (2.9)

where a dot means derivative with respect the cosmic time, h̄ = h̄
j
j and k is a comoving

wavenumber.
4A similar study of the quartic self-interaction model for a real scalar field can be found in [89], although

the initial conditions were seemingly chosen so that the early sti↵ and radiation like behaviors were avoided.
In such a case, the nucleosynthesis constraints are not important, and both the mass and self-interaction
parameters can be varied more freely than in the case considered in [25].

– 7 –

wavelength at the ground state of the particle in the gravita-
tional potential well and that the power spectrum is su-
pressed relative to the CDM case. We see before that most of
the interesting properties of potential !2" as dark matter are
due to its polynomial behavior #2. Then, it is not strange
that, in our case, the mass power spectrum is also related to
the CDM case by !see Ref. $20%"

P#!k "!" cosx31!x8#
2

PCDM!k ", !83"

but using x"(k/kmin,#) with kmin,# being the wave number
associated to the Jeans length !65". The difference with re-
spect to the case treated in Ref. $20% is that the relevant time
scale is that when scalar oscillations start and not that of
radiation-matter equality.
If we take a cutoff of the mass power spectrum at k

"4.5 hMpc#1 $15%, we can fix the value of parameter & .
Using Eq. !63", we find that

&!20.28,

V0!!3.0$10#27MPl!36.5 eV"4, !84"

m#!9.1$10#52MPl!1.1$10#23 eV,

where MPl"1.22$1019 GeV is the Planck mass. All param-
eters of potential !2" are now completely determined and we
have the right cutoff in the mass power spectrum.

3. Scalar field ! dominated era

For completeness, we will draw some general features of
the evolution of fluctuations during the dark energy domi-
nated era. At this era, the scalar field ' now dominates both
the evolution of the Universe and the differential equation
!67". We do not worry about # anymore, because its per-
turbed solution continues being (#"#(1/2)h due to its os-
cillations around the minimum of the potential. The scalar
energy )' evolves as a perfect fluid with equation of state
*' due to the effective exponential behavior of potential !1".
Then,

'̇"!1!*'!a2)', !85"

Ṽ"
1#*'

2 )' , !86"

Ṽ!"!3!1!*'"Ṽ , !87"

Ṽ""3!1!*'"Ṽ . !88"

Since the scalar field ' dominates the evolution of the Uni-
verse, it is straightforward that

a2)'"
3H 2

+0
, !89"

FIG. 4. Evolution of the density contrasts for baryons (b , stan-
dard cold dark matter (CDM and scalar dark matter (# vs the scale
factor a taking ,0M"0.30 for the models given in Fig. !3". The
modes shown are k"0.1 Mpc#1 !top" and k"1.0$10#5 Mpc#1

!bottom".

FIG. 5. Power spectrum at a redshift z"50: -CDM !solid-
curve", and #CDM with &"5 !dashed-curve" and &"10 !dotted-
curve". The normalization is arbitrary.
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function evolves harmonically in time. Equations (1) and (2)
become

@ 2
x (x!) ¼ 2x(U " !)þ 2!j!j2!; ð5Þ

@ 2
x (xU ) ¼ x!2: ð6Þ

The above system has to be solved under the condition of
regularity at the origin !(0)¼ @x!(0) ¼ 0, and isolation !(x !
1) ¼ 0; we also demand that U (1) ¼ 0. These boundary con-
ditions determine in a unique manner the values of U (0) and !,
which are the only free parameters of the solution.

We made a numerical routine that solves equations (5) and (6)
using a shooting procedure that tunes the values of ! and U (0)
for a given central value !(0). In Figure 1, we show the profiles
of the initial wave function for some positive and negative values
of the self-interaction coefficient !. Also shown in there are the
branches of equilibrium configurations for four different values
of!. As expected, for! & 0 there is nothing like a maximum in-
dicating an unstable branch, which is always present (and typical)
in relativistic boson configurations (Colpi et al. 1986; Balakrishna
et al. 1998; Guzmán 2004).

3. NUMERICAL EVOLUTION

In order to numerically evolve the SP system, we make a dis-
cretization of space and time, and approximate all derivatives
using second-order accurate finite differencing. The SP system
is evolved one time step "" using equation (1) to obtain a new
wave function, and then we solve equation (2) to find the corre-
sponding (new) gravitational potential.

We use an explicit time integrator to solve equation (1), as op-
posed to the fully implicit method used and described in Guzmán
&Ureña-López (2004), who reduced the problem of evolution to
a linear system of equations. In the present case, due to the non-
linear term in the Hamiltonian of equation (1), the reduction to a
linear system of equations is not that simple.

In any case, independently of the numerical method used to
integrate in time, we demand the evolution operator to preserve
the number of particles for an equilibrium configuration, N ¼R
j jx2 dx.2 With a modified version of the iterative Crank-

Nicholson evolution method (Teukolsky 2000), we were able to

reproduce the results found with the implicit method for the
linear case and confirm that the evolution was mass preserving
for a wide range of values of !.

Boundary conditions.—At every time step, equation (2) is
integrated inward, and thus we applied the following boundary
condition at the two outermost points of the numerical grid,

U (xn"1) ¼ " N (xn"1)

xn"1
; ð7Þ

U (xn) ¼ " N (xn)

xn
; ð8Þ

where n labels the outermost point of the numerical domain. The
whole profile of U (x) is then found using a sixth-order accurate
Numerov algorithm (Koonin & Meredith 1990).
As discussed in Guzmán & Ureña-López (2004), the bound-

ary conditions (7) and (8) are equivalent to impose the condition
j (" ; xn)j ! 0 on the wave function; hence, we are forcing the
system to remain in the computational domain. Because we want
to evolve systems out of equilibrium and allow the flow of par-
ticles out of the numerical domain, we implemented a sponge
over the outermost points of the grid, which consists of adding an
imaginary potentialVj(x) to the Schrödinger equation (seeGuzmán
& Ureña-López 2004; Israeli & Orszag 1981). The expression
we use for the sponge profile is

Vj ¼ " i

2
V0 2þ tanh

xj " xc
! "

#

# $
" tanh

xc
#

% &' (
; ð9Þ

which is a smooth version of a step function with amplitude V0,
centered in xc and width #. The minus sign guarantees the decay
of the number of particles at the outer parts of our integration
domain; that is, the imaginary potential behaves as a sink of par-
ticles. It is also worth noting that no term related to the self-
interaction appears in the conservation of probability equation,
since we are assuming ! is real.

Tests.—The obstacles our code must sort out are (1) the evo-
lution of equilibrium configurations, in which the wave function
oscillates with the definite frequency ! found in x 2, whereas the
density of probability and the gravitational potential should re-
main time independent; and (2) the convergence of physical prop-
erties of the system (eq. [4]).

Fig. 1.—Left: Profiles !(x) of equilibrium solutions of the SP for different values of the self-interaction coefficient !. As expected, the larger the coefficient ! the
more massive the equilibrium configuration is. Right: Sequences of equilibrium configurations for different values of!. Each point in the curves represents a solution of
the initial value problem of a total number of particles,N, and 95% radius, r95 (the radius inside of which 95% of the total mass is contained). In this plot it is manifest that
the bigger the ! the less compact a configuration is. The filled circles indicate two configurations we use as tests for our numerical implementation.

2 In full units, the total mass is given by M ¼ (m2
Pl /m)N, where mPl is the

Planck mass.
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Figure 1. Recent astrophysical constraints on FDM particle mass in the literature. The allowed regions of mass from each work are
colored in blue, and this work’s findings are colored in red.

black holes. Here we are interested in the soliton profile
far from the Schwarzschild radius and take a simplified
approach in a regime where the SMBH can be treated as a
point mass. Our theory is also applicable to other baryonic
perturbing forces on the soliton. An understanding of the
e↵ect of SMBH on soliton cores is a vital ingredient in the
study of DM density profiles at galactic cores. Central DM
density profiles can be paired with known observational
constraints of the central density to provide constraints on
the FDM model itself. Furthermore the galactic core is an
ideal location to search for signals of DM self-interaction or
annihilation signatures (Boyarsky et al. 2014; Bulbul et al.
2014), which depend on how the dark matter is centrally
concentrated.

There has been significant e↵ort in recent years to
place various astrophysical constraints on the FDM particle
mass (summarised in Figure 1). Constraints come from a
variety of systems and scales (from the cosmic microwave
background (� 10 Mpc) to the centres of galaxies (⇠ 1 pc)).
These include: (1) using stellar velocity dispersion to fit the
Milky Way’s dwarf spheroidal galaxies with a soliton core
assuming the systems are dark-matter dominated (Marsh &
Pop 2015; González-Morales et al. 2017; Broadhurst et al.
2019; Safarzadeh & Spergel 2019), (2) fitting ultra-faint
dwarfs with soliton-cored halo models (Safarzadeh &
Spergel 2019), (3) analysing the Lyman-↵ forest as a tracer
of dark matter structure (Kobayashi et al. 2017; Iršič et al.
2017; Nori et al. 2018), (4) placing constraints from CMB
lensing (Hložek et al. 2018), (5) calculating dynamical heat-
ing on the Milky Way’s stellar disc from FDM substructure
including interference pattern fluctuations (Church et al.
2019), (6) calculating the impact of FDM fluctuations
on stellar streams that formed from disrupted globular
clusters in the Milky Way (Amorisco & Loeb 2018), (7)

calculating the impact of soliton cores on galactic nuclei
assuming they mimic SMBHs (Desjacques & Nusser 2019),
and (8) modeling of ultra-di↵use galaxies (Wasserman et al.
2019). There has also been a recent claim for the Milky
Way that a central solitonic core of mass ' 10

9
M� and

particle mass m ' 10
�22

eV is observationally supported
by the central motion of bulge stars (De Martino et al. 2018).

The FDM mass constraints generally fall into two
camps that are in moderate tension. Dwarf spheroidal
galaxies are typically well fit by large, low-density dark
matter cores, such as the soliton cores predicted by FDM
theory with a particle mass of m ' 10

�22
eV. But many

other investigations favor m > few ⇥ 10
�22

eV. It is possible
that the lack of consistency could be due to systematic
biases from certain model-dependent assumptions that are
used when testing the FDM model on di↵erent scales. For
example, some of the mentioned works from the literature
ignore interference pattern fluctuations of the FDM field,
or the coupling of dark matter to baryons, or are limited by
uncertainties in the phase-space distribution of collisionless
tracers (stars) which will be greatly improved in the Gaia
era of astrometry (Lazar & Bullock 2019). We therefore take
the view that it is important to obtain as many independent
constraints as possible, over a range of physical scales, to
verify existing constraints. In this work, we are able to place
a new independent constraint on the FDM particle mass,
that comes from small scale (< 10 pc) data, namely upper
limits on the amount of dark matter concentrated around
the SMBHs of the Milky Way and M87 (which recently had
its black hole imaged; Collaboration et al. 2019).

Our paper is organised as follows. In section 2 we
describe the necessary mathematical background of the
FDM system with a point mass black hole perturber and
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Thank you! 
¡Gracias!


