Dark Energy with HIRAX

Kavilan Moodley Astrophysics Research Centre, UKZN

Cosmology at Home Virtual Conference August/September 2020

Cosmic History

CMB Anisotropies

PLANCK

Credit: NASA

CMB Spectrum

Acoustic Oscillations

Cosmic Concordance

Cosmic Composition

What is the Dark Energy?

Dark Energy Key Probes

- Type 1a supernovae: measure luminosity distance $\mathsf{D}_\mathsf{L}(z)$
- Cosmic lensing: measure growth factor G(z) in combination with angular diameter distance $D_A(z)$
- Galaxy clusters: measure growth factor G(z) and comoving volume $dV(z) \sim D_A^2(z)/H(z)$
- Baryon acoustic oscillations: measure angular diameter distance $D_A(z)$ and Hubble parameter H(z)

Baryon Acoustic Oscillations

Galaxies trace Matter Distribution

Dark Energy with BAOs

- Galaxy positions trace acoustic waves from the early universe: sound horizon sets characteristic 150 Mpc scale
- Measure galaxy positions -> see ripples in the power spectrum, peak in the correlation function
- DR12 release from SDSS-III shown below, redshift range 0.2 < z < 0.75

BAO Distance Ladder Measurements

Recent eBOSS results:

Distance scale measurements at few percent level from tracers at different redshifts

Hydrogen in Galaxies Traces Matter Distribution

Track Hydrogen with the 21cm Line

BAOs with 21cm Intensity Mapping

Sound wave imprint from recombination has a characteristic 150 Mpc scale (1 degree) - large

Require large volumes (large sky area and z range)

Counting individual galaxies & getting to high redshift is challenging

Throw away spatial resolution: use HI intensity mapping to measure matter distribution AND obtain redshift information.

Use the BAO peak as a standard ruler for charting the expansion history.

Challenges for 21cm Intensity Detection

- Signal is weak need lots of collecting area and sensitive receivers
- Large volume is required to reduce cosmic variance since BAO scale is large need to cover large sky area and redshift range
- Precise calibration is required need a very stable instrument
- Foregrounds (galactic and extragalactic) are significantly larger than the 21cm signal need an extremely well characterised instrument to limit foreground leakage

21cm Intensity Signal Correlated with Galaxies

Cosmology@Home

INYUVESI

AKWAZULU-NATALI

21cm intensity detected in cross-correlation

Designing a 21cm Intensity Mapping Dark Energy Telescope

- Maximise sensitivity on scales of interest -> Use compact array geometry
- Redshift range: 0.8 < z < 2.5 to capture dark energy domination at z ~ 1 and sufficient volume
 -> Required frequencies: 400 800 MHz
- BAO 150 Mpc angular scale: 3 1.3 degrees at 0.8 < z < 2.5 -> Required interferometer baseline lengths: 15 60 metres
- BAO scale along line of sight: 20 12 MHz at 0.8 < z < 2.5 -> Required frequency resolution: 100 channels, more for foregrounds and higher order peaks
- BAO signal level: ~ 0.1 mK -> Low system temperature, large collecting area (lots of elements)

Traditional Radio Interferometers

- Long baselines for resolution
- Layout optimised to sample uv plane: better imaging
- Trace structure on small to intermediate scales

The Hydrogen Intensity mapping and Real time Analysis eXperiment (HIRAX)

Frequency Range	400–800 MHz
Frequency Resolution	$390\mathrm{kHz},1024$ channels
Dish size	$6 \mathrm{m}$ diameter, $f/D=0.25$
Interferometric layout	32×32 square grid, 7 m spacing
Field of View	$15 \text{ deg}^2 - 56 \text{ deg}^2$
Resolution	$\sim 5' - 10'$
Beam Crossing Time	17–32 minutes
System Temperature	50 K

Newburgh et al (1607.02059)

- A compact array of 1024 six metre dishes operating at 400-800 MHz
- Scalable array built in stages: 128 (2021, funded), 256 (2022, funded) then 1024 elements -Operate full array for 4 years
- Dishes stationary but can tilt for more sky area, fabrication in South Africa
- Back-end: overlap with CHIME channelize with FPGA ICE boards, correlation with GPUs

Collaboration and Funding

https://hirax.ukzn.ac.za/

- UKZN and South African NRF flagship funding secured for site infrastructure and pathfinder array. SARAO providing site, power and data.
- Swiss SNF funding secured for 512 channel X-engine (GPU correlator). McGill funding for F-engine (ICE boards).
- NRF strategic research equipment (SRE) funding secured to expand pathfinder array.
- Sufficient budget to build 256 dishes.

Location, Location, Location ...

ALE.

place

data)

Other HIRAXers

Rock hyrax (dassie) resident in the Karoo

Thrash metal band

HIRAX Design Plan

- 1024 close-packed 6m dishes.
 Fibre-glass and metal prototypes fabrication in South Africa.
- Cloverleaf dual-pol feed, RF over fibre
- Operate between 400-800 MHz, 1000 channels
- Channelizing on FPGA ICE boards
- Correlation on GPUs

HIRAX Instrument

HIRAX Complementarity with CHIME

- HIRAX dishes || CHIME cylinders different systematics, larger collecting area
- Lower RFI at SKA SA Karoo site
- CHIME sees whole (accessible) sky each day || HIRAX can integrate deep on narrow strips
- HIRAX observes southern sky
 - optical surveys: cross-correlation science and foreground mitigation
 - more pulsars in south

Dark Energy with HIRAX Kavilan Moodley, UKZN Cosmology@Home

Site

Telescope Field of view

Beam size

Sky coverage

North

South

HartRAO Prototype Array

- 8-element prototype at Hartebeeshoek Radio Observatory informing design, analysis and systematics
- Eight "off-the-shelf" f/0.38 dishes fully instrumented with fully functional scaled-down digital backend with single ICE board and GPU correlator
- Metal and fibreglass f/0.25 dishes installed and being tested
- Field-testing RFoF system
- Complementary prototyping efforts at DRAO and Green Bank

HartRAO Prototype Data

- Currently characterising instrumental properties from the data
- We see fringes. Can fit basic beam and gain models.
- Poor RFI environment at HartRAO limits high-precision characterisation
- RF characterisation on DRAO 3m f/D=0.25 dishes, Green Bank 6m f/D=0.38 dishes; Shift to (low RFI) Karoo qualification array site with selected 6m dishes

Upcoming Schedule

- Inform instrument design + layout through cosmology/electromagnetic simulations in 2020
- HartRAO programme in 2020/2021*
 - Test f/0.25 fibreglass and metal dishes
 - Finalise dish requirements and go out on tender
 - Test RFoF and feeds on f/0.25 dishes
 - Develop holography/drone beam calibration system
- Develop HIRAX Karoo main site by Q2 2021*
- 2-element qualification dishes at HIRAX Karoo Klerefontein site by Q2 2021*
- 8-element prototype at HIRAX Karoo Swartfontein site by Q3 2021*
- 128-element pathfinder at HIRAX Karoo Swartfontein site by Q1 2022*

subject to COVID-19

restrictions.

HIRAX 21cm Intensity Mapping Survey

- Wide redshift coverage: z ~ 0.8 2.5
- Survey area: ~15,000 deg²
- Angular coverage: *l* ~ 40 2000 gives k_{perp} ~ [10⁻², 1] h Mpc⁻¹ at z~1; limited by primary beam and maximum baseline.
- Frequency coverage: y ~ 20 20000 gives k_{par} ~ [10⁻³, 1] h Mpc⁻¹; limited by foregrounds and nonlinearities.
- Sensitivity: 15 uJy/beam daily,1 uJy/beam full survey

BAO Forecasts with HIRAX

• HIRAX will make a precise measurement of the matter power spectrum in the BAO regime in a number of redshift bins from z = 0.775 to 2.55.

HIRAX Distance Scale Forecasts

- Convert power spectrum BAO constraints into constraints on D_V in each redshift bin -> constrain the BAO scale at the percent level out to high redshift with HIRAX-1024

HIRAX Cosmological Parameter Forecasts

• HIRAX measurements of D_V will provide tight constraints on cosmological parameters in combination with CMB data

HIRAX Dark Energy Constraints

HIRAX-1024 FoM ~ 300 approaching DETF Stage IV class galaxy surveys ~400

Foregrounds Challenge

- Galactic signal is several orders of magnitude larger than the 21cm intensity mapping signal
- Filter foregrounds by using spectral smoothness of foreground intensity spectrum (polarisation is more complicated)

Foregrounds Challenge

Foreground wedge builds up

- v = (B_{instr} + δB_{instr})(a_{fg} + δa_{fg} + a₂₁) = B_{instr} a_{fg} (filter) + B_{instr} δa_{fg} (leakage) + δB_{instr} a_{fg} (leakage) + B_{instr} a₂₁ (signal) + higher order terms
- Precise foreground modelling and characterisation is required

 Precise knowledge of the instrument is vital - need to characterise beams, pointing, delay, gain, bandpass, cross-polarisation etc.

Instrument Characterisation is a Major Challenge

- Instrument Calibration: Beam calibration using holography + drone calibrator mapping: mapping tests will start with HartRAO prototype, characterise using full electromagnetic simulations
- Analysis: Quasi-redundant calibration for non-idealities in HIRAX array (Sievers, 1701.01860)
- Design Simulations: Determine tolerances on telescope parameters to limit instrumental leakage

Simulations for Instrument Design

- End-to-end cosmology simulations pipeline that incorporates beams from full EM simulations
- Simulations used to set requirements for upcoming dish tender -> control errors in beam shape, pointing and geometric delay that result in non-redundancies
- Fisher matrix approach with 21cm/foreground/instrument parameters -> determine instrument tolerances that will mitigate foreground leakage and preserve dark energy FoM

Simulations for Instrument Design

Cosmology@Home

KWAZULU-NATALI

HIRAX Cross-Correlation Cosmology

- HIRAX intensity mapping survey will have good redshift overlap with other large-area cosmological surveys, primarily in the southern sky
 - ◆ Photometric: DES, LSST
 - ◆ Spectroscopic: DESI, Euclid and W-FIRST
 - ♦ CMB: ACT, SPT, Simons Observatory
- HIRAX has excellent noise over cosmologically interesting scales, complementary to MeerKAT and SKA
- Cross-correlations ideal for testing systematics and joint science

LSST Photo-z Calibration

• Cross-correlation with the LSST photometric survey can provide photo-z calibration via the clustering redshifts method and improve dark energy parameter constraints from cosmic shear and galaxy clustering.

Galaxy-21cm Magnification Bias Estimator

- Direct 21cm-CMB lensing correlation vanishes because of loss of low k_{par} 21cm modes in foreground subtraction
- Construct a bispectrum estimator that uses two copies of the 21cm intensity field and one copy of the CMB lensing field.
- Estimator relies on modulation of smallscale 21cm modes by large-scale (supersample) modes to recover the line-of-sight long wavelength modes that are required for correlation with CMB lensing.

Provide tight constraints on HI bias parameters

- Independently constrain growth function and clustering amplitude
- Improve dark energy constraints

- Provide tight constraints on HI bias parameters
- Independently constrain growth function and clustering amplitude
- Improve dark energy constraints

- Provide tight constraints on HI bias parameters
- Independently constrain growth function and clustering amplitude
- Improve cosmological constraints

- Provide tight constraints on HI bias parameters
- Independently constrain growth function and clustering amplitude
- Improve dark energy constraints

Thank you!

