Measurement of the B-band Galaxy Luminosity function with Approximate Bayesian Computation

arXiv: 2001.07727

Luca Tortorelli

& Martina Fagioli, Jörg Herbel, Adam Amara, Tomasz Kacprzak, Alexandre Refregier

The Galaxy Luminosity function

 $\Phi(M, z) =$ Number of galaxies per unit volume per unit magnitude at redshift z

What is the Forward Modeling approach?

*

Pixelization Noise

Bridle et al. 2009

Ζ

. .

. . .

Analysia	
Analysis	
Selection cuts	

	Mag	Size	
Obj 1			
Obj 2			
Obj 3			

Target sample

Simulated target sample

Analysis Selection cuts		Mag	Size		
	Obj 1				Obj 1
	Obj 2				Obj 2
	Obj 3				Obj 3
					•••

Credits: Jörg Herbel

Galaxy population model in UFig

The ABC inference scheme

Calibration, but no likelihood for Bayesian Analysis

Approximate Bayesian Computation (ABC).

$$p(\theta|y) \simeq p(\theta|\rho(x,y) \le \epsilon)$$

ABC algorithm

while $(p_{acc} > p_{acc,min})$ do: if T = 1 do: for i = 1 to N do: Sample $\theta_{i,T=1}^*$ from pre-defined prior: $\theta_{i,T=1}^* \sim p(\theta)$ Create dataset x from $\theta_{i,T=1}^*$: $x \sim Model(\theta_{i,T=1}^*)$ Set $\theta_{i,T=1} = \theta^*_{i,T=1}$ Set $\rho_{i,T=1} = \rho_{i,T=1}(x, y)$ end for else do: for i = 1 to N' do: Sample $\theta_{i,T}^*$ from $GMM(\theta_{T-1})$ Create dataset x from $\theta_{i,T}^*$: $x \sim Model(\theta_{i,T}^*)$ Set $\theta_{i,T} = \theta^*_{i,T}$ Set $\rho_{i,T} = \rho_{i,T}(x,y)$ end for Set $p_{acc} = \frac{1}{N'} \sum_{k=1}^{N'} \mathbb{I}_{\rho_{i,T} < \epsilon_{T-1}}$ Let $\epsilon_{\rm T} = Q_{\rho^{(\rm T)}}(q)$ the q-th percentile value of $\rho^{(\rm T)}$, where $\rho^{(\rm T)} = \{\rho_{i,\rm T}\}_{i=1,\ldots,N'}$ Let $\{(\theta_i^{(T)}, \rho_i^{(T)})\} = \{(\theta_{i,T}, \rho_{i,T}) | \rho_{i,T} \le \epsilon_T, i = 1, ..., N_{q,T}\}$

Prior and Distance metrics

Parameter	Distribution	Prior
α (blue)	Fixed value	-1.3
$\alpha \ (red)$	Fixed value	-0.5
$M_{B,slope}^{*}$ (blue)	Multivariate Normal	$\mu = -9.44 \times 10^{-1}, \sigma^2 = 8.29 \times 10^{-1}$
$M^*_{B,slope} \ (red)$	Multivariate Normal	$\mu = -7.33 \times 10^{-1}, \sigma^2 = 5.30 \times 10^{-1}$
$M^*_{\rm B,intept} - 5 \log h_{70} \text{ (blue)}$	Multivariate Normal	$\mu = -2.041 \times 10^1, \sigma^2 = 3.312 \times 10^{-1}$
$M_{B,intcpt}^* - 5 \log h_{70} \text{ (red)}$	Multivariate Normal	$\mu = -2.035 \times 10^{-1}, \sigma^2 = 2.968 \times 10^{-1}$
$\phi^*_{\rm exp}$ (blue)	Multivariate Normal	$\mu = -5.66 \times 10^{-2}, \ \sigma^2 = 9.96 \times 10^{-2}$
ϕ_{\exp}^* (red)	Multivariate Normal	$\mu = -6.97 \times 10^{-1}, \sigma^2 = 9.21 \times 10^{-1}$
$\ln \phi_{\rm amp}^* / 10^{-3} {\rm h_{70}^3} {\rm Mpc^{-3}} {\rm mag^{-1}} ({\rm blue})$	Multivariate Normal	$\mu = -5.28 \times 10^0, \sigma^2 = 4.1 \times 10^{-1}$
$\ln \phi_{\rm amp}^* / 10^{-3} {\rm h_{70}^3 Mpc^{-3} mag^{-1}} $ (red)	Multivariate Normal	$\mu = -5.28 \times 10^0, \sigma^2 = 6.5 \times 10^{-1}$
$ m r_{50, slope}^{ m phys}$	Multivariate Normal	$\mu = -2.4 \times 10^{-1}, \sigma^2 = 9.8 \times 10^{-6}$
$ m r_{50,intcpt}^{ m phys}$	Uniform	[-2, 4]
$\sigma_{ m phys}$	Multivariate Normal	$\mu = 5.7 \times 10^{-1}, \sigma^2 = 1.9 \times 10^{-5}$
$a_{i,0}$	Dirichlet \times Uniform	$[1., 1., 1., 1., 1.] \times [5, 15]$
$a_{i,1}$	Dirichlet \times Uniform	$[1., 1., 1., 1., 1.] \times [5, 15]$

Distance Metric	Label
Absolute difference in the number of detected galaxies	d_1
Random Forest distance with 21 summary statistics	d_2
Random Forest distance with 31 summary statistics	d_3
Maximum Mean Discrepancy distance on u^* , g' , r' , i' , z' band properties	$d_{4,,7}$
Maximum Mean Discrepancy distance on u^* , g' , i' band properties	d _{8,,11}
Maximum Mean Discrepancy distance on i' band magnitudes and redshift distributions	d_{12}
Magnitude histogram distance on u^* , g' , r' , i' , z' bands separately	$d_{\{13,,17\}}$
Size histogram distance on u^* , g' , r' , i' , z' bands separately	$d_{\{18,,22\}}$
Maximum value among all previously defined rescaled distances	$d_{23} = \max(\underline{d}_{\{1,,22\}})$
Maximum value between the rescaled MMD distance on 5 bands and the rescaled absolute difference	$d_{24,,27} = \max(\underline{d}_1, \underline{d}_{4,,7})$
Maximum value among the rescaled MMD distance and the rescaled magnitude histogram distance on 5 bands	$d_{28,\dots,31} = \max(\underline{d}_{4,\dots,7}, \underline{d}_{\{13,\dots,17\}})$

Example images

12*10^6 galaxies from posterior distribution

	Observations	Posterior simulations
MAG_u*	$25.25 \substack{+0.92 \\ -1.10}$	$25.21 \ ^{+1.02}_{-1.34}$
MAG_g'	$24.85_{-1.13}^{+0.79}$	$24.75 \ ^{+0.95}_{-1.34}$
MAG_i'	$23.92 \ ^{+0.83}_{-1.41}$	$23.66 {}^{+0.91}_{-1.44}$
SIZE_u*	$3.38 \substack{+1.39 \\ -0.92}$	$3.40 \stackrel{+1.23}{_{-0.89}}$
SIZE_g'	$3.19 \ ^{+1.10}_{-0.68}$	$3.23 \ ^{+1.01}_{-0.67}$
SIZE_i'	$2.89 \ ^{+1.09}_{-0.71}$	$2.94 \ ^{+1.02}_{-0.64}$
u* - g'	$0.41 \ ^{+0.52}_{-0.34}$	$0.42 {}^{+0.49}_{-0.32}$
g' - i'	$0.95 \ ^{+0.59}_{-0.51}$	$1.12 \begin{array}{c} +0.53 \\ -0.53 \end{array}$

2° 30

g'

Redshift distribution n(z) for VIPERS

^{15/17}

SDSS CMASS SPARSE

Fagioli, Tortorelli et al. 2020, arXiv:2002.04039

SDSS PC 4

USPEC PC 4

SDSS PC 5

JSPEC PC 3

5000

4500

6000

7000

6500

5500

wavelength $[\mathring{A}]$

0.1

0.0

-0.1

0.1

0.0 -0.1

Conclusions

- For M_B 5 log h_70 > -21, at all redshifts, the number density at fixed absolute magnitude of blue galaxies is greater than that of red galaxies.
- M* for blue galaxies fades more than that for red galaxies from z = 1 to z = 0.1.
- Phi* for blue galaxies stay roughly constant between z = 0.1 and z = 1.
- Phi* for red galaxies decreases by 35% in the same redshift range.
- The number density of blue galaxies at M* is always higher than the red one.